Chapter 1

Introduction



CHAPTER 1. INTRODUCTION



Chapter 2

A Primer on Lattice Codes



CHAPTER 2. A PRIMER ON LATTICE CODES



Chapter 3

Perfectly Secure Bidirectional
Relaying

3.1 Introduction

Consider a network having three nodes, denoted by A, B and R, as shown
in Fig. 3.1. The nodes A and B, henceforth called the user nodes, wish to
exchange information with each other. However, they are connected only to
R, and not to each other directly. The node R acts as a bidirectional relay
between A and B, and facilitates communication between them. All nodes are
assumed to operate in half-duplex mode (they cannot transmit and receive
simultaneously), and all links between nodes are wireless (unit channel gain)
additive white Gaussian noise (AWGN) channels. Bidirectional relaying in
such settings has been studied extensively in the recent literature [?, 7, ?, ?,
?].

We use the compute-and-forward framework proposed in [?, ?] for bidi-
rectional relaying, and we briefly describe a binary version for completeness
and clarity. Suppose that A and B possess bits X and Y, respectively. We will
assume that X and Y are generated independently and uniformly at random.
The goal in bidirectional relaying is to transmit X to B and Y to A through
R. To achieve this goal, a compute-and-forward protocol takes place in two
phases as shown in Fig. 3.2: (1) the (Gaussian) multiple access phase or the
MAC phase, where the user nodes simultaneously transmit to the relay, and
(2) the broadcast phase, where the relay transmits to the user nodes. In the
MAC phase, the user nodes A and B independently modulate their bits X
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6 CHAPTER 3. PERFECTLY SECURE BIDIRECTIONAL RELAYING

and Y into real-valued symbols U and V', respectively. The relay receives an
instance of a random variable W, that can be modeled as

W=U+V+2, (3.1)

where it is assumed that the links A — R and B — R have unit gain, Z denotes
additive white Gaussian noise independent of U and V', and communication
is assumed to be synchronized. Using W, the relay computes the XOR of the
two message bits, i.e., X &Y, and in the broadcast phase, encodes it into a
real symbol which is transmitted to the two users over a broadcast channel.
Note that A and B can recover Y and X, respectively, from X @Y.

O—(—®

Figure 3.1: Bidirectional relay.
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Figure 3.2: Bidirectional relaying: (a) MAC phase, (b) Broadcast phase.

In the compute-and-forward bidirectional relaying problem described above,
we study the scenario where an additional secrecy constraint is imposed on
the relay R. Specifically, we require that, in the MAC phase, the relay remain
ignorant of the individual bits X and Y, while still being able to compute
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the XOR X @Y reliably. The relay is assumed to be “honest-but-curious”:
it behaves like a passive eavesdropper, but otherwise helps in the exchange
of messages. We study the problem under two secrecy constraints: perfect
secrecy, which we describe next, and strong secrecy, which we describe fur-
ther below. Perfect secrecy refers to the requirement that the relay be fully
ignorant of the individual bits, i.e., that the random variables U + V', X,
and Y be pairwise independent. More generally, the user nodes encode the
messages X and Y into d-dimensional real vectors U and V respectively, and
we require U 4V to be statistically independent of each individual message.
The problem of secure bidirectional relaying in the presence of an untrusted
relay under a perfect secrecy constraint has not been studied prior to this
work, and this is a major contribution of this paper.

We propose a coding scheme for secure bidirectional relaying that uses
a pair of nested lattices (A, A(()n)), with A(()") C A™. In our scheme, the
messages are mapped to the cosets of the coarse lattice A(()n) in the fine lattice
A™. Given a message (say, the jth coset, A;) at the user node, the output
of the encoder is a random point chosen from that coset according to a
distribution p;. This distribution is constructed using a well-chosen density
function f on R? Specifically, p; is obtained by sampling and normalizing
f over A;. We will show that if the characteristic function of f is supported

within the fundamental Voronoi region of the Fourier dual of A(()"), then it is
possible to achieve perfect secrecy. We then study the average transmit power
and achievable rates for reliable and secure communication. We will show
that a transmission rate of [% log, % — log, 26]+ is achievable with perfect
secrecy, where [z]T denotes max{z,0}. Our coding scheme for security is
explicit, in that given any pair of nested lattices, we precisely specify the
distributions p; that must be used to obtain independence between U 4V
and the individual messages.

We later relax the secrecy constraint, and only demand that the mutual
information between U+ V and the individual messages be arbitrarily small
for large block lengths, a requirement that is referred to as strong secrecy [?].
We again use a nested-lattice coding scheme, but now the distributions p;
are obtained by sampling and normalizing a Gaussian function, instead of a
density having a compactly supported characteristic function. The idea of
using probability mass functions (pmfs) obtained by sampling Gaussians was
used [?] in the context of the Gaussian wiretap channel, and we will make
use of the techniques developed there. Using this scheme, we show that a



8 CHAPTER 3. PERFECTLY SECURE BIDIRECTIONAL RELAYING

rate of [% log, (% + 2) — %log2 2e

p is achievable.

We show that our schemes can achieve secrecy even in the absence of
noise, and that the addition of noise cannot leak any extra information to
the relay. This allows us to develop the solution in two parts: first, we
give coding schemes based on nested lattices that achieve secrecy over a
noiseless channel. Then, we require the lattices to satisfy certain additional
“goodness” properties in order to have reliable decoding in the presence of
noise. The signal (codeword) transmitted by each user acts as a jamming
signal for the other user’s message, and this helps achieve secrecy. In our
scheme, the channel noise is not used to increase confidentiality, unlike the
Gaussian wiretap channel [?] where an increase in the noise variance on the
eavesdropper’s link can be used to achieve higher transmission rates. It may
be possible to harness the additive noise in the MAC phase to obtain higher
achievable rates, but we do not pursue this in the present work. However, our
approach does offer an advantage: since our scheme guarantees secrecy in the
absence of noise, the security properties continue to hold even when channel
noise is present, and this is true irrespective of the noise distribution. Indeed,
our scheme provides secrecy even if the channel noise follows an unknown
probability distribution, a property that is in general not satisfied by coding
schemes for wiretap channels. We only require the noise to be additive and
independent of the transmitted codewords.

It is worth emphasizing the basic idea behind the construction of encoders
in our coding schemes. Given a pair of nested lattices, the user nodes send
points from the fine lattice in the nested lattice pair according to a pmf
obtained by sampling a well-chosen density function at the fine lattice points.
The choice of the density function determines the level of security that is
achievable.

In prior work, the problem of secure bidirectional relaying in the presence
of an untrusted relay was studied by He and Yener in [?], who showed that
the mutual information rate, defined to be :Z(X;U + V) = 17(V;U +
V) goes to zero for large blocklengths d. They later studied the problem
under a strong secrecy constraint in [?], and gave a scheme based on nested
lattice codes and universal hash functions. Using probabilistic arguments,
they showed the existence of linear hash functions for randomization at the
encoders that achieve strong secrecy. In both scenarios, they showed that a
rate of [% log, (% + %) — 1} " is achievable. The achievable rates guaranteed
by our strongly secure scheme is slightly lower than that obtained in [?].
However, our scheme avoids the use of hash functions, and given a pair of

]Jr
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nested lattices that satisfy certain “goodness” properties!, we give an explicit
probability distribution for randomization at the encoders that can be used
to obtain strong secrecy.

The idea of using nested lattice codes for secure communication is not
new. They have been proposed for secure communication in other scenarios,
particularly the Gaussian wiretap channel (see e.g., [?, 7, ?]). They have also
been used in interference networks [?], and for secret key generation using
correlated Gaussian sources [?].

Recall that the compute-and-forward protocol has two phases: a MAC
phase and a broadcast phase. We will restrict our study exclusively to the
MAC phase, since there is no security requirement in the broadcast phase
and the relay can use a capacity-approaching code to broadcast X &Y to
the users.

Organization of the paper

We establish some basic notation and recall some definitions related to lat-
tices in Section 3.2. We describe the secure bidirectional relaying problem
in Section 3.3, and then proceed to design coding schemes under the per-
fect secrecy constraint in Section 3.4. The main result under the perfect
secrecy constraint is given in Theorem 1. We give a randomized encoding
scheme for any arbitrary nested lattice code that achieves perfect secrecy in
the absence of noise in Section 3.5, then study the effect of additive noise
and find achievable transmission rates in Section 3.6. Thereafter, we study
the same problem under a strong secrecy constraint, design coding schemes,
and evaluate the performance in Section 77, with the main result summa-
rized in Theorem ?7?7. In Section 7?7, we show that these schemes can be
extended to the multi-hop line network [?] and find achievable transmission
rates under the two secrecy constraints. We make some concluding remarks
in Section ?7?7. Most of the technical proofs are given in appendices.

3.2 Definitions and Notation

We first describe the notation we will use throughout the paper. We denote
the set of real numbers by R, and integers by Z. We use the notation R

Unfortunately, there are no known explicit constructions of lattices that satisfy these
properties, but only existence results based on probabilistic arguments.
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for the set of nonnegative real numbers. The number of elements in a fi-
nite set S is denoted by |S|. If x is a real number, then [z]T is defined as
max{z,0}. Random vectors are denoted in boldface upper case, e.g., U, and
their instances in boldface lower case, as in u. The components of the vectors
are denoted in normal font, e.g., x = [z1 23]7. Matrices are represented in
sans-serif, as in H. The Euclidean (¢?) norm of a column vector h is denoted
by ||h||. The identity matrix of size M x M is denoted by I;.

The probability of an event A is denoted by Pr[A]. If X is a random
variable, then H(X) denotes the entropy of X. The symbol E[-| denotes ex-
pectation. The characteristic function of a random variable X is the function
P(t) = E[e*X!], for t € R.  For random variables X,Y, the notation X 1Y
means that X and Y are independent. The mutual information between X
and Y is denoted by Z(X;Y).

Let f(n) and g(n) be sequences of positive real numbers. We say that
gn) =o(f(n)) if g(n)/f(n) — 0 as n — oo. Also, g(n) = 0,(1) if g(n) — 0
as n — oo. Furthermore, g(n) = Q(f(n)) if there exists a constant K > 0
such that g(n) > K f(n) for all sufficiently large n, and g(n) = O(f(n)) if
there exists a constant K > 0 such that g(n) < K f(n) for all sufficiently
large n.

3.2.1 Lattices in R?

We briefly recall some definitions of lattices and their properties. For a more
detailed treatment, see e.g., [?, ?].

Let k,d be positive integers with k& < d. Suppose uj, us, ..., u; are lin-
early independent column vectors in R?. Then the set of all integer-linear
combinations of the u;’s, A = {Zle a; :a; € Z,1 <i <k}, is called a k-
dimensional lattice in RZ. It is easy to verify that A forms an Abelian group
under componentwise addition. The collection of vectors {uy, us, ..., u;} is
called a basis for the lattice A; clearly, the basis of a lattice is not unique,
e.g., {—uy, —uy,...,—u} is also a basis.

The k x d matrix A := [u; uy --- ui]? is called a generator matriz of A,
and we say that the vectors u;, us, ..., u; generate A. We write A = ATZF .=
{ATx : x € ZF}. If A is full-rank (i.e., A is a d-dimensional lattice in R),
then the determinant of A, denoted by detA, is defined to be |det(A)]. It is
a standard fact that detA does not depend on the generator matrix. Unless
mentioned otherwise, we will henceforth consider full-rank lattices in R¢.

If A and Ay are two lattices in R? such that Ay C A, then we say that A is
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) |

[x] mod A

***************************************

Figure 3.3: Illustrating the Q(.) and the [.] mod A operation for the Z2
lattice.

a sublattice of A, or Ag is nested within A. We call Ay the coarse lattice, and
A, the fine lattice. The number of cosets of Ay in A is called the index of Ay
in A, denoted by |A/Ag|. Tt is a standard fact that |A/A¢| = detAg/detA [?,
Theorem 5.2].

If A is a generator matrix of a lattice A, then A* := {(A=Y)Tz : z € Z%}
is called the dual lattice of A. The dual lattice A* is also equal to {x :
Zle xy; € Z for every y € A}[?]. The Fourier dual of A, denoted A, is
defined as 2w A*.

For any x € R? we define the nearest neighbour quantizer Q,(x) :=
arg min, ., [|x — A|| to be the function which maps x to the closest point in
A. The fundamental Voronoi region of A is defined as V(A) :={y : Qa(y) =
0}. The volume of the fundamental Voronoi region, vol(V(A)) is equal to
detA [?, 7].

For any x € R? we define the modulo-A operation as [x] mod A :=
x — Qa(x). In other words, [x] mod A gives the quantization error of the
nearest neighbour quantizer Qa(-). Fig. 3.3 illustrates the Qx(-) and the
modulo-A operations.

The covering radius of A, denoted by 7eo(A), is defined as the radius
of the smallest closed ball in R? centered at O which contains V(A). The
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Figure 3.4: Illustrating the covering, packing and effective radii of the hexag-
onal lattice.

effective radius, reg(A), is defined as the radius of a ball in R? having the
same volume as that of V(A). The packing radius, rpaac(A), is the radius of the
largest open ball centered at 0 that is contained in V(A). Clearly, reoy(A) >
Teff (A) > Tpack(A). These parameters are illustrated for the hexagonal lattice
in Fig. 3.4.

The normalized second moment per dimension of A is defined as

1
gy = —/ y 2 dy. 3.2
A d(detz\)l+2/d V(A) I (32)

3.3 Description of the Problem

The general set-up is as follows: two user nodes, denoted by A and B, possess
messages taking values independently and uniformly in a finite set. For the
purposes of computation at the relay, the messages are mapped into random
variables X and Y taking values in a finite Abelian group G@, where the
choice of G is left to the system designer. The mapping is such that the
random variables X and Y remain uniformly distributed over G®, and we
will see later that this distribution helps in achieving secrecy. The addition
operation in the group G? is denoted @. The encoder at node A maps the
given message X into a random d-dimensional real vector U. In a similar
fashion, the encoder at B maps the message Y to a random vector V. The
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user nodes transmit their respective vectors to the relay simultaneously, and
at the end of the MAC phase, the relay obtains

W=U+V+7Z, (3.3)

where Z is a Gaussian random vector with zero mean and covariance matrix
o2y, where + denotes componentwise real addition. The coding scheme at
each user node must ensure that the relay can recover X @Y reliably from
W, and one of the following:

e Perfect secrecy: The mutual information between W and each individ-
ual message is exactly zero?, i.e., Z(W; X) = Z(W;Y) = 0.

e Strong secrecy: Z(W; X) and Z(W;Y') can be made arbitrarily small
for all sufficiently large d.

We in fact impose a slightly stronger security criterion than the one men-
tioned above. Even in the absence of noise, the mutual information between
U + V and each individual message must be either zero (perfect secrecy)
or can be made arbitrarily small for all sufficiently large d (strong secrecy).
Since the additive noise is independent of everything else, X — U +V —
U + V + Z forms a Markov chain, and using the data processing inequality,
I(X;U+V+Z) <I(X;U+V). Likewise, Z(Y; U+ V+Z) <Z(Y;U+V).
Therefore, any scheme that achieves perfect (strong) secrecy in the absence
of noise will also achieve perfect (strong) secrecy in a noisy channel.

The messages must also be protected from corruption by the additive
noise in the multiple access phase. Since the messages are uniformly dis-
tributed over G@, élog2 |G@| gives the average number of bits of informa-
tion sent to the relay by each user node in one channel use in the MAC phase.
Our aim will be to ensure secure computation of X &Y at the highest possi-
ble rate (which we define to be 1 log, |G\?)|) for a given power constraint at
the user nodes. To formalize these notions, we have the following definition:

Definition 1. For a positive integer d, a (d, MD) code for the MAC phase
of the bidirectional relay channel with user nodes A, B and relay R consists of
the following:

1. Messages: Nodes A and B possess messages X and Y, respectively,

drawn independently and uniformly from a finite Abelian group G
with M@ = |G| elements.

2Equivalently, we want W 1L X and W 1L Y.
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2. Codebook: The codebook, denoted by C, is a discrete subset of RY,
not necessarily finite. The elements of C are called codewords. The
codebook consists of all those vectors that are allowed to be transmitted
by the user nodes to the relay.

3. Encoders: The encoder at each node is a randomized mapping from
G to R%, specified by the distributions puix(ulz) = PriU = u|X = 7]
and pviy (vly) = PrlV = v|Y =y| for allu,v € C and z,y € G,
At node A, given a message x € G9 as input, the encoder outputs a
codeword u € C at random, according to pu|x (u|x). Similarly, at node
B, with y as input, the encoder outputs v € C according to pyv|y(v|y).
The messages x and y are encoded independently.

The rate of the code is defined to be

(@ _ logy M@

R
d

(3.4)
The code has an average transmit power per dimension defined as

1 1
PO — “E||U|? = <E|[ V| (35)

4. Decoder: The relay R receives a vector W € R@ as given in (3.3).
The decoder, DD : R — G9 maps the received vector to an element
of the set of messages. The average probability of error of the decoder
18 defined as

N = E[PrD(W) # X & Y]],

where E denotes expectation over the messages, X,Y , and over the
encoders (U, V given X,Y ).

3.4 Perfect Secrecy

We first study the case where perfect statistical independence between U +
V and the individual messages is required, and the relay must be able to
reliably compute X @ Y (where @ denotes addition within G(¥)) from the
received vector. To summarize, we have the following requirements for secure
compute-and-forward:
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(S1) (U, X) 1L (V,Y).
(S2) (U+V) L Xand (U+V) LY.

(S3) U + V almost surely determines X @ Y.

If conditions (S1)-(S3) are satisfied, the relay has no means of finding the
individual messages. Property (S3) ensures that the relay can decode X @
Y, which can then be encoded/modulated for further transmission over the
broadcast channel. On reception of the broadcast message, since user A (resp.
B) knows X (resp. Y), it can recover Y (resp. X).

If the relay only had access to X @& Y instead of U + V, the problem
of secure communication would have been trivial due to the uniformity and
independence of X and Y. However, the relay receives the real sum of U
and V, which makes the problem harder. For example, suppose that d =1,
and GV = Z,, the group of integers modulo 2. Consider the coding scheme
U =X, and V =Y. Then, in the absence of noise, whenever U +V =0 or
U + V = 2, the relay can determine both X and Y.

The performance of a coding scheme is generally evaluated in terms of the
average transmit power, and the transmission rate. To make these notions
formal, we define achievable power-rate pairs as follows.

Definition 2. A power-rate pair (P, R) is achievable with perfect secrecy
if, for every 6 > 0, there exists a sequence of (d, MD) codes such that

e conditions (S1)-(S3) are satisfied for all d,
and for all sufficiently large d,
e the transmission rate, R'Y | is greater than R — §;
e the average transmit power per dimension, P@ | is less than P +6; and

e the average probability of decoding error, n'¥, is less than é.

The objective of the next couple of sections will be to prove the following
result.

Theorem 1. A power-rate pair of

1 +
P, | Eog, =~ logy(2¢)
2 o2

is achievable with perfect secrecy in the MAC phase of the bidirectional relay.
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3.5 Perfect secrecy: The Noiseless Setting

To get a clear picture as to how secure communication can be achieved,
we first describe the binary case. The messages X and Y are chosen inde-
pendently and uniformly at random from {0, 1}, or equivalently, the set of
integers modulo-2 (G = Z,). They are modulated to U and V', respectively,
which take values in R. Studying the one-dimensional case will give us the in-
tuition needed to tackle the general case, and we will see that the techniques
developed here extend quite naturally to the d-dimensional setting.

We will show that there exist distributions on U and V' that permit secure
computation defined by properties (S1)—(S3). This is somewhat surprising
since we cannot have non-degenerate real-valued random variables U, V' that
satisfy (U+V) 1L U and (U+V') 1L V', as shown in the following proposition:

Proposition 2. Let U and V' be independent real-valued random variables,
and let + denote addition over R. Then, we have (U +V) 1L U and (U +
V) LV iff U and V are constant a.s. (i.e., there exist a,b € R such that
PrlU =a] = Pr[V =0] =1).

Proof. The “if” part is trivial, so let us prove the “only if” part. Let W =
U~+V, so that by assumption, U, V and W are pairwise independent. Let ¢,
vy and @y denote the characteristic functions of U, V' and W, respectively.
In particular, oy = pppy. From U = W -V we also have that oy = pw oy,
where Py denotes the complex conjugate of yy. Putting the two equalities
together, we obtain ¢y = ¢y|ev|®. To be precise, oy (t) = pu(t)|py(t)|* for
all t € R.

Now, characteristic functions are continuous and take the value 1 at ¢t = 0.
Hence, ¢y is non-zero within the interval [—§,d] for some ¢ > 0. Thus,
lov ()] =1 for all t € [—0,d]. By a basic property of characteristic functions
(see Lemma 4 of Section XV.1 in [?]), this implies that there exists b € R
such that @y (t) = e for all t € R, thus proving that V = b with probability
1.

A similar argument using V' = W — U shows that U is also constant with
probability 1. O

3.5.1 Secure Computation of XOR at the Relay

In this section, X and Y are independent and identically distributed (iid)
uniform binary random variables (rvs), and X @& Y denotes their modulo-
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2 sum (XOR). We describe a construction of integer-valued rvs U and V
satisfying the properties (S1)—(S3).

Conditions on PMFs and Characteristic Functions

We first derive conditions under which integer-valued rvs U and V' can satisfy
the desired properties. We introduce some notation: for k € Z, let py(k) =
Pr[U = k], py(k) = Pr[V = k], and for a € {0, 1}, let pyja(k) = Pr[U = k |
X =dl, pva(k) = Pr[V =k | Y = a]. Thus, py = (1/2)(pujo + pu1) and
pv = (1/2)(pvio + pvin)-

Property (S1) is equivalent to requiring that the joint probability mass
function (pmf) of (U,V, X,Y’) be expressible as

povxy (k, 1, a,b) = (1/2)(1/2)puia(k)pvip(l) (3.6)

for k,l € Z and a,b € {0,1}. Next, we look at (S3). Without the requirement
that U+V 1L X and U 4+ V 1Y, it is trivial to define U and V such that
(S3) is satisfied: for example, take U = X and V =Y. More generally,
property (S3) is satisfied by any U,V such that

pujo(k) = pyjp(k) =0 for all odd k € Z,

pup(k) =pyp(k) =0 for all even k € Z. (3.7)

Finally, we turn our attention to (S2). We want (U + V) 1L X and
(U+V) 1L Y. Let us define, for k € Z, pyyv(k) = Pr[U +V = k], and
for a € {0,1}, pyivix=a(k) = PrlU+V =k | X = a] and pyivjy=a(k) =
PrilU+V =k | Y = a]. Assuming (U, X) 1 (V,Y), we have py vy =
PU * DV PU+V|X=a = PUJa * PV, a0d Dyyviy=a = DU * Pv]a, Where * denotes
the convolution operation. Thus, when (U, X) 1L (V,Y), (S2) holds iff

PU * Dv = Puja ¥ Pv = DPu * pvja for a € {0,1}. (3.8)

It helps to view this in the Fourier domain. Let ¢y, ¢v, ¢u|, etc. denote
the respective characteristic functions of the pmfs py, pv, pyj. etc. — for
example, Yuia(t) = D,z Puja(k)e™. Then, (3.8) is equivalent to

YUYV = PulaPv = Yupvie for a € {0,1}. (3.9)

Note that ¢y = (1/2)(¢ujo + ¢oupn) and @y = (1/2)(¢vio + @vp). Hence,
(3.9) should be viewed as a requirement on the conditional pmfs py), and

Pvie, a € {0, 1}.
In summary, we have the following lemma.
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Lemma 3. Suppose that the conditional pmfs py. and pyi., a € {0,1},
satisfy (3.7) and (3.9). Then, the rvs U, V, X, Y with joint pmf given by
(3.6) have properties (S1)—-(S3).

The observations made up to this point also allow us to prove the following
negative result.?

Proposition 4. Properties (S1)-(S3) cannot be satisfied by integer-valued
rus U,V that are finitely supported.

Proof. Suppose that U and V' are finitely supported Z-valued rvs. Then,
@u(t) and @y (t) are finite linear combinations of some exponentials et . .. eifnt,
Equivalently, the real and imaginary parts of ¢y and ¢y are trigonometric
polynomials. Thus, either ¢y (resp. ¢v) is identically zero, or it has a dis-
crete set of zeros. The former is impossible as ¢y (0) = ¢y (0) = 1. Now,
suppose that (S1) and (S2) are satisfied, which means that (3.9) must hold.
The equality guey = pupy, in (3.9) implies that ¢y, (t) = @v(t) for all ¢
such that ¢y (t) # 0. But since ¢y (t) has a discrete set of zeros, continuity
of characteristic functions in fact implies that @y|4(t) = v (¢) for all . An
analogous argument shows that ¢p,(t) = @u(t) for all t. Hence, U 1L X
and V' 1L Y. From this, and (S1), we obtain that U +V 1 X @Y, thus
precluding (S3). O

Practical communication systems generally have a maximum power con-
straint, which means that we would like to have U,V be finitely supported.
But from Proposition 4, we see that it is not possible to have finitely sup-
ported U, V' that permit secure computation of the XOR at the relay. There-
fore, in order to ensure secure computation, we will have to relax the power
constraint to an average power constraint on the user nodes. This means that
we require finite-variance, integer-valued random variables U, V', with infinite
support, that satisfy properties (S1)—(S3), or equivalently, the hypotheses of
Lemma 3.

We now give a construction of U, V' that satisfy the hypotheses of Lemma 3.
We will choose a density function whose characteristic function is compactly
supported. The random variables U and V' are chosen according to a dis-
tribution obtained by sampling and appropriately normalizing this density
function. To study this in more detail, we rely upon methods and results from
Fourier analysis. The key tool we need is the Poisson summation formula,

3In fact, a stronger negative result can be shown — see Proposition 9.
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which we briefly recall here. Our description is based largely on Section XIX.5
in [?].

3.5.2 The Poisson Summation Formula

Fix a positive integer d, and let A be a full-rank lattice in R?. Recall from
Section 3.2.1 that A denotes the Fourier dual of A.

Let ¢ : R — C be the characteristic function of a R%valued random
variable, such that [, [ (t)|dt < co. In particular, ¢ is continuous and
1(0) = 1. Since v is absolutely integrable, the random variable has a contin-
uous density f : R? — R*. The Poisson summation formula can be expressed
as follows: for any s € R, we have for all ¢ € R,

ch—l—n —Hns) — (detA) ka—l—s ilets, €} (3.10)

HGA keA

provided that the series on the left converges to a continuous function ¥(¢).
It should be pointed out that texts in Fourier analysis typically state the
Poisson summation formula for an arbitrary L' function f, and would then
require that f and ¢ decay sufficiently quickly — see e.g., [?, Chapter VII,
Corollary 2.6] or [?, Eq. (17.1.2)] — for (3.10) to hold. However, as argued by
Feller in proving the formula in the one-dimensional setting |[?, Chapter XIX,
equation (5.9)], in the special case of a non-negative L' function f, it is
sufficient to assume that the left-hand side (LHS) of (3.10) converges to a
continuous function ¥(¢).

Note that W(0) = (detA) >, ., f(k+s), which is a non-negative quantity.
If U(0) # 0, then dividing both sides of (3.10) by ¥(0) yields the important
fact that U(¢)/¥(0) is the characteristic function of a discrete random vari-
able supported within the set A +s := {k+s:k € A}, the probability mass
at the point k + s being equal to f(k+s)/> ,c, f(£+s).

A special case of interest is when ) is compactly supported; specifically,
it is supported within the fundamental Voronoi region of A: t(t) = 0 for
all t ¢ V(A). In this case, we can readily show that the series on the LHS
of (3. 10) converges to a continuous function W. Indeed, if we define w( ) =
P(t)e~"*%) then the series on the LHS of (3.10) may be written as ¥({) :=

¥ S>\II(C), where N
=Y ¢(¢+n).
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Now, recall that v, being a characteristic function, is continuous on RY;
hence, so is w Also, by assumptlon 1 is supported within V(A) hence, so
is ¢ In particular, by continuity, 1/1 must be 0 on the boundary of V(A)
therefore, the supports of @b( ) and @b( +n) do not intersect for any non-zero
n € A. From this, we infer that \If, which is formed by the superposition of
continuous functions with disjoint supports, must be continuous. Hence, we
can conclude that W(¢) = e“¢*W(¢) is a continuous function.

Moreover, it is clear that W(0) = 1/(0), and since 1 is a characteristic
function, ¢)(0) = 1. As explained above, this shows that ¥ is the character-
istic function of a discrete random vector supported within A + s. In fact,
by plugging in ¢ = 0 in (3.10) we obtain that ¥(0) = (detA) >, ., f(k+s),
which shows that >, ., f(k +s) = 1/(detA). For future reference, we sum-
marize this in the form of a proposition.

Proposition 5. Let A be a full-rank lattice in R?. Let ¢ : R* — C be a
characteristic function such that ¢¥(t) =0 for allt ¢ V(A), and let f : R —

R* be the corresponding probability density function. Then, for any s € RY,
the function U : R?* — C defined by

ch_i_n —i(n,s)

neA

15 the characteristic function of a random wvector supported within the set
A+s:={k+s:k e A}. The probability mass at the point k + s is equal to
(detA) f(k +s).

It should be noted that compactly supported characteristic functions do
indeed exist — see e.g., [?, Section XV.2, Table 1], [?], [?]. We also give an
explicit construction in Example 1 in Section 3.5.3.

Applying Proposition 5 to the one-dimensional lattice TZ = {kT : k €
Z}, with T' > 0, we obtain the corollary below.

Corollary 6. Let @ be a characteristic function of a real-valued random
variable such that ¥ (t) = 0 whenever |t| > 7/T for some T > 0, and let f
be the corresponding probability density function. Then, for any s € R, the
function ¥ : R — C defined by

Z Y(C + 2na/T) e~ **Cnm/T)

n=—oo
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P(t)
1

VAN

“n -72 o /2 T

Figure 3.5: A generic characteristic function supported on [—7/2, 7/2].

15 the characteristic function of a discrete random variable supported within
the set {kT + s : k € Z}. The probability mass at the point kT + s is equal
to Tf(kT + s).

This corollary plays a central role in the construction described next.

3.5.3 Construction of Z-Valued RVs Satisfying (S1)-
(S3)

We now describe the construction of integer-valued rvs that satisfy (S1)—(S3).
Let ¢ be a characteristic function (of a continuous rv X') with the properties
that

(C1) ¥(t) =0 for |t| > w/2, and
(C2) (t) is real and non-negative for all ¢t € R.4

A generic such 1 is depicted in Fig. 3.5; we give a specific example a little
later in this section. Since 1 is real-valued, it must be an even function:
P(—t) = (t) for all t € R. Also, (0) = 1. Moreover, since v is integrable
over R, by the Fourier inversion formula, the rv X has a continuous density
f. Note that Corollary 6 holds for T < 2.

Let ¢ be the periodic function with period 27 that agrees with ¢ on
[—m, 7], as depicted in Fig. 3.6. Note that ¢({) =>_7 __ (¢ +2mn). Thus,
applying Corollary 6 with 7" = 1 and s = 0, we find that ¢ is the characteristic
function of an integer-valued rv, with pmf given by

p(k) = f(k) for all k € Z. (3.11)

4There is no loss of generality in imposing this requirement. Suppose that an rv X has
characteristic function ¢, which is complex-valued in general. Let X1, Xo be iid rvs with
the same distribution as X. Then, X; — X5 has characteristic function ¢ = ||2.
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o(t)
1

-3m -5m2 -2m -3m2 -m -2 |0 T2 i 32 2 5m/2 3m

Figure 3.6: Period-27 extension of generic ¥ from Fig. 3.5.

@o(t)

+ + i + + + + + + + + + t
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t r } t t ; + + r y + y t
_3n//5n/2 -2 —3Wc/z nﬁ\yfuz 2 57?2\37:
1

Figure 3.7: The periodic functions ¢y and ¢, derived from .

Next, for s = 0,1, define ¢, as follows: for ( € R,

oo

ps(Q) = D (¢ +nm)e ",

n=—oo

It is easily seen that g is the periodic extension of ¢ with period m, i.e.,
o is the periodic function with period 7 that agrees with ¢ on [—m/2,7/2],
as depicted at the top of Fig. 3.7 for a generic 1) shown in Fig. 3.5. On the
other hand, ¢, is periodic with period 27: its graph is obtained from that of
o by reflecting about the (-axis every second copy of ¢, as depicted at the
bottom of Fig. 3.7.

Applying Corollary 6 with 7" = 2 and s € {0, 1}, we get that ¢q and ¢, are
characteristic functions of rvs supported within the even and odd integers,
respectively. The pmf corresponding to ¢ is given by

2f(k) if k is an even integer
(k) = 4 20 ! (3.12)
0 otherwise.
and that corresponding to ¢y is
2f(k) if k is an odd integer
(k) = 3 2T 8) ' & (3.13)
0 otherwise.
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From (3.11)—(3.13), we have p(k) = 1(po(k) + p1(k)) for all k € Z.
Finally, note that since ¢o(t) and ¢4 (t) differ from ¢(t) only when ¢(t) =
0, we have

©> = o = Y1 (3.14)

With these facts in hand, we can describe the construction of Z-valued
rvs U and V satisfying properties (S1)-(S3). Set pyjo = pvio = po and
pupn = pvji = p1- This implies that py = py = p, where p is as defined in
(3.11). Clearly, (3.7) holds. To verify (3.9), note that, by virtue of (3.14),
we have for a € {0, 1},

Uy = ©° = P,

But, by construction, oypvi. = ¢veule = ¢¥P.. Therefore, by Lemma 3, the
rvs (U, V, X,Y) with joint pmf given by (3.6) have the properties (S1)—(S3).

Recall from the discussion following Proposition 4 that we need the rvs
U and V to have finite variance. To ensure this, we use the fact [?, pp. 512
513] that a probability distribution F' with characteristic function x has finite
variance iff y is twice differentiable; in this case, x'(0) = ip and x”(0) = —pua,
where p and po are the mean and second moment of F'. Thus, the rvs U and
V' (with pmf p as above) have finite variance iff the characteristic function ¢
is twice differentiable. In this case, as  is real, so is ¢’(0), which implies that
U and V have zero mean. Hence, their variances are equal to their second
moments, and so, Var(U) = Var(V) = —¢”(0). By construction, ¢ is twice
differentiable iff ¢ is twice differentiable and ¢”(0) = ¢”(0). We summarize
our construction of the rvs U and V in the following theorem.

Theorem 7. Let X,Y be iid Bernoulli(1/2) rvs. Suppose that we are given
a probability density function f : R — RY with a non-negative real charac-
teristic function v such that ¢(t) = 0 for |t| > /2. Set pyjo = pvio = Do
and pyjn = pvii = P, where po and py are as in (3.12) and 3.13). Then, the
resulting Z-valued rvs U and V' satisfy properties (S1)-(S3). Additionally,
the rus U and V' have finite variance iff i is twice differentiable, in which
case the variance equals —"(0).

Based on Theorem 7, secure computation of XOR at the relay works as
follows: the nodes A and B modulate their bits independently to an integer k,
with probability po(k) (from (3.12)) if the bit is 0, or with probability p; (k)
(from (3.13)) if the bit is 1. The probability distributions can be chosen
such that the modulated symbols have finite average power. The average
transmit power is equal to the variance of the modulated random variable,
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)

/N

—1

Figure 3.8: f(t) = max{0,1 — |¢|}.

which is —1”(0), and a handle on this can be obtained by choosing 1 carefully.
The relay receives the sum of the two integers, which is independent of the
individual bits X and Y (of A and B respectively). However, the XOR of the
two bits can be recovered at R with probability 1. This is done by simply
mapping the received integer W to 1, if W is odd, and 0 if W is even. To gain
a better understanding of the construction of the rvs, let us see an example.

Example 1. Consider the density (from [?, Section XV.2, Table 1])

- fz=0
f(:::)z{f’rcﬂ Zi#o (3.15)

which has characteristic function
f(t) = max{0,1 — |t} (3.16)

The function f is plotted in Fig. 3.8. In particular, f(t) =0 for |t| > 1.
The function f s compactly supported but it is not differentiable at 0. This
can be rectified by considering instead g = f*f, where x denotes convolution,
which can be explicitly computed to be
P =12+ 2  iff <1
g(t) = (f = ))({t) = ¢ 52— [t])? Flr<ft] <2 (3.17)
0 otherwise

Now, define h(z) := (3n%/4) [f(rx/4)]?, with f as in (3.15). We prove
in Appendixz A that h is a probability density function whose characteristic
function is given by

b(t) =

([N}

g(%),
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where g is as in (3.17). It can be directly verified that 1 is non-negative
with ¢(t) = 0 for |t| > 7/2, and that ¢ is twice differentiable, with " (0) =
—48 /2.

Thus, rvs U and V' can be constructed as in Theorem 7 with var(U) =
var(V) = 48 /7.

Remark 8. It is even possible to construct compactly supported C* charac-
teristic functions. Constructions of such functions are given in [?]. In fact,
[?] constructs compactly supported characteristic functions ¢ such that the
corresponding density functions f are even functions satisfying lim, ., ™ f(z) =
0 for all m > 0. This implies that all the absolute moments ffooo |z|™ f(z) dx
exist, and hence, ¥ is a C* function (see [?, p. 512]). If such a char-
acteristic function ¢ is used in the construction described in Theorem 7,
then the resulting Z-valued rvs U,V will have pmfs py(k), pv (k) whose tails
decay faster than any polynomial in k. To be precise, limy_ o k"py(k) =
limg 00 £"py (k) = 0 for any m > 0.

The above remark shows that we can have Z-valued rvs U,V satisfying
properties (S1)—(S3), with pmfs decaying faster than any polynomial. How-
ever, the rate of decay cannot be much faster than that. Indeed, it is not
possible to construct Z-valued rvs with exponentially decaying pmfs that sat-
isfy properties (S1)—(S3). Define a pmf p(k), k € Z, to be light-tailed if there
are positive constants C' and A such that p(k) < CA7I¥l for all sufficiently
large |k|.

Proposition 9. Properties (S1)-(S3) cannot be satisfied by integer-valued
rvs U,V having light-tailed pmfs.

Proof.5 Suppose that U,V are Z-valued rvs satisfying (S1) and (S2).
Using ou = (1/2)(¢uvjo + ¢up) and oy = (1/2)(pvp + pvp) in (3.9), we
readily obtain

Vi = i and P = i (3.18)

If U,V have light-tailed pmfs, then py|, and pyje, a € {0, 1}, must also
be light-tailed, since py, < 2py and pyja < 2py. The key observation is
that the characteristic function of a light-tailed pmf is real-analytic, i.e., it
has a power series expansion » - ¢,t", with ¢, € C, that is valid for all

5This proof was conveyed to the authors by Manjunath Krishnapur.
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t € R [?, Chapter 7]. Thus, gy, and @y, for a € {0,1}, are real-analytic.
It follows by comparing power series coefficients, that if functions g and h
are real-analytic and g? = h?, then either ¢ = h or ¢ = —h. Applying this
to (3.18), we find that ¢yj0 = £pp)1, and similarly for V. In fact, since ¢y
and ¢y cannot be identically 0, we actually have oy = pup = ¢u, and
similarly for V. This implies that U 1. X and V' 1 Y. From this, and (S1),
we obtain that U +V 1L X @Y, thus precluding (S3).

3.5.4 Extension to Finite Abelian Groups

A close look at the modulations in the previous section reveals the following
structure: we had a fine lattice A = Z and a coarse lattice Ay = 2Z, with
the quotient group A/Ag, consisting of the two cosets 27 and 1+ 27, making
up the probabilistically-chosen modulation alphabet. Given a message X €
A/Ay, the encoder outputs a random point from the coset X according to
a carefully chosen probability distribution. Note that the quotient group in
this case is isomorphic to Zs, and this enables recovery of the XOR of the bits
(addition in Zy) from integer addition of the transmitted symbols modulo the
coarse lattice. Also, the choice of the probability distribution (from Theorem
7) ensures that the choice of coset at each transmitter is independent of the
integer sum at the relay. We shall extend the construction described in the
previous subsection to d dimensions, thereby obtaining a scheme that satisfies
properties (S1)—(S3).

Now, any finite Abelian group G can be expressed as the quotient group
A/Ag for some pair of nested lattices Ag C A. Indeed, any such G is isomor-
phic to a direct sum of cyclic groups: G = Zy, ® Zn, ® - - - ® Zy, for some
positive integers Ny, Ny, ..., Nj [?, Theorem 2.14.1]. Here, Zy, denotes the
group of integers modulo-N;. Taking A = Z% and Ay = AT Z?, where A is
the diagonal matrix diag(Ny, Na, ..., N), we have G = A/Aq. So, the finite
Abelian group case is equivalent to considering the quotient group, i.e., the
group of cosets, of a coarse lattice Ay within a fine lattice A. These lattices
may be taken to be full-rank lattices in R

As an example, let N > 2 be an integer, and let Zy = {0,1,..., N — 1}
denote the set of integers modulo N. Let X,Y be iid random variables
uniformly distributed over Zy, and let X @& Y now denote their modulo-
N sum. Similar to the binary case discussed so far, given a non-negative
real characteristic function ¢ such that ¢ (t) = 0 for |[t| > 7/N, we can
construct Z-valued random variables U, V', jointly distributed with XY, for
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which properties (S1)—(S3) hold. In this case, the finite Abelian group can
be taken as the group of cosets of the coarse lattice NZ within the fine lattice
7, which is isomorphic to Zy.

Let Ay be a sublattice of A of index M (i.e., the number of cosets of Ag
in A is M). List the cosets of Ag in A as Ag, Ay, ..., Ay—1, which constitute
the quotient group G = A/Ay. As before, @ denotes addition within G.

Consider rvs X, Y uniformly distributed over G. We wish to construct
random vectors U, V taking values in A, having the properties (S1)—(S3).
The following theorem shows that this is possible.

Theorem 10. Suppose that ¢ : R — R is the characteristic function of a
probability density function f: R — RY, such that (t) = 0 for t ¢ V(A,),
where Ay is the Fourier dual of Ag. For j =0,1,...,M — 1, define the pmf
p; as follows:

(k) = {|detA0| fk) ifk e A (3.19)

0 otherwise.

Finally, define a random vector U (resp. V) jointly distributed with X (resp.
Y) as follows: if X = Aj (resp. Y = A;), U (resp. V) is a random point
from A; picked according to the distribution p;. Then, the resulting A-valued
random vectors U,V satisfy properties (S1)-(S3). Additionally, E||U|* and
E| V| are finite iff ¢ is twice differentiable at 0, in which case E|U|> =
E|V|? = —A(0), where A = Z;lzl 9% is the Laplacian operator.

As with Theorem 7 and XOR, the above theorem allows for secure com-
putation at the relay of the group operation X @ Y. The theorem is proved
using Proposition 5, in a manner completely analogous to Theorem 7. The
interested reader is directed to Appendix B for the proof.

Constructing compactly supported twice-differentiable (or even C*°) char-
acteristic functions 1 : R — R*, d > 1, is straightforward, given our
previous constructions of such functions from R to R*. Suppose that for
i=1,2,...,d, ¢; : R = R* is the characteristic function of a random vari-
able X, such that ¢;(t) = 0 for [t| > A\;, with A\; > 0, and Xy, Xs,..., Xy
are mutually independent. Then, ¥ (ty,...,tq) = []&, ®:(t;) is the charac-
teristic function of the random vector X = (Xj,...,Xy). Note that ¢ is
compactly supported: ¥(t) = 0 for t ¢ H?Zl(—)\i, Ai). Moreover, if the ;s
are twice-differentiable (or C'*°) for all 4, then so is 1. Constructions other
than product constructions are also in abundance; see e.g., [?], [?] and Theo-
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Figure 3.9: Example of a characteristic function supported within V(2Z?).

rem 11 below. A smooth, compactly supported characteristic function in R?
is depicted in Fig. 3.9.

Our objective is to design codes (as defined in Definition 1) for secure
computation at the relay. With the construction described above, the rate
of the code depends on the number of cosets, M, of Ay in A. For a given
average power constraint, the system designer is usually faced with the task
of maximizing the rate. Equivalently, for a given rate, the average transmit
power must be kept as small as possible. The transmit power is equal to the
second moment of U (or V). Therefore, while any characteristic function
supported within V(AO) suffices for the construction of Theorem 10, we must
use a ¢ for which —A(0) is the least among such ’s. This would yield
random vectors U and V of least second moment (and hence least transmit
power), and having the desired properties.

It is evident that by simply scaling the nested lattice pair, the average
transmit power may be made as small as required. Suppose that the random
vectors U and V, distributed over a fine lattice A, have second moment P.
Then, for any a > 0, the random vectors U’ = U and V' = o'V, distributed
over aA := {az : z € A} have second moment a? P. Choosing a small enough
« would suffice to satisfy the power constraint. However, as we will see in
the following sections, when we have to deal with the additive noise in the
MAC channel, it is not possible to scale down the lattice arbitrarily if the
probability of error is to be made small. Also, for a given (fixed) coarse
lattice, it turns out that the second moment (which depends solely on the
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choice of ¥) cannot be made arbitrarily small. Indeed, the following result,
adapted from [?], gives a precise and complete answer to the question of how
small —A1)(0) can be for a characteristic function 1 supported within a ball
of radius p in R,

Theorem 11 ([?], Theorem 5.1). Fiz a p > 0. If ¢ is a characteristic
function of a random vector distributed over R such that ¥(t) = 0 for ||t >
p, then

4
—Ay(0) > 2 Jaa, (3.20)

2

with equality iff (t) = {pv(t/p) for 1 = wgkwy. Here, j. denotes the first
positive zero of the Bessel function Ji. Also, wa(t) = v4 Qd(2||t||j%) for
It]| < 1/2 and wa(t) =0 for ||t|| > 1/2, and

waFkwg(t) = /wd(r)wd(t +T)dr

denotes the folded-over self convolution of wg, with wy(t) denoting the complex
conjugate of wy(t). Furthermore, fort € R,

Qd@):zlmd/z)(§>2jd2(w
and
2 4‘72:22

T R (d2) 3 ()
2

where I'(-) denotes the Gamma function. The density f corresponding to the
minimum-variance v is given by f(x) = pf(px), where

oo Qalxl2) Y
fx) = d<j3;2_(”XH/2)2) , (3.21)

where
45 3%2

“7 4aniT(d)2)
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Remark 12. Observe that Theorem 10 is true for any nested lattice pair
(A, Ao). As long as 1(t) is a characteristic function supported within V(Ay),
we have an encoding scheme that satisfies (S1)-(S3). If we restrict ¢ to
be supported within a ball of radius p, which is contained within V(Ao), then
Theorem 11 gives us a suitable candidate for 1 that can be used to obtain per-
fect secrecy. Since we are interested in minimizing the transmission power,
we can choose p to be as large as rpack(f&o), where rpack(f\o) denotes the pack-
ing radius of Ao. Hence, we now have a coding scheme that achieves perfect
secrecy for any arbitrary nested lattice pair. This is rather interesting, since
earlier work on weak and strong secrecy using lattices [?, 7, 7] invariably
required that the nested lattices satisfy certain goodness properties. There-
fore, ours is an explicit scheme which specifies, for any nested lattice pair,
a distribution to be used for randomization at the encoder in order to obtain
perfect secrecy. In particular, our randomization scheme can also be used in
conjunction with “practical” lattice coding schemes (e.g., [?, 7, ?]) that have
low decoding complexity.

3.6 The Gaussian Noise Setting

Given any nested lattice pair, we now have a scheme whereby the relay can
compute X @Y from U + V, but cannot determine X or Y separately. We
next consider the scenario where the symbols received by the relay are cor-
rupted by noise, and prove the achievability of the power-rate pairs described
in Theorem 1. Recall that in the MAC phase, the relay receives

W=U+V+7Z,

where Z is zero-mean iid Gaussian noise with variance 0. The coding scheme
that we use is largely based on the work in [?, ?], and is described below.

3.6.1 Coding Scheme for Perfect Secrecy

We now describe the sequence of (d, M(9) (recall Definition 1) codes that
achieve perfect secrecy.
Code: A (A, Aéd)) nested lattice code consists of a pair of full-rank nested

lattices Aéd) C A in R%. The messages are chosen from the group G@ =

AD /A whose M@ = |A@ /ALY elements are listed as Ag, Ay, . .., Ay g
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Channel
User node A o 7‘; o ﬁ: Relay R
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Figure 3.10: The operations performed by the user nodes and the relay.

Encoding: We have messages X,Y at nodes A,B that are independent rvs,
uniformly distributed over G¥. We first pick a characteristic function ¢ sup-
ported within V(A(d)) as needed in Theorem 10. We impose the restriction
that ¢ be supported within a ball centered at 0 with radius equal to the pack-
ing radius, rpack(A ) of the dual lattice A . Recall that the packing radius
is, by deﬁnltlon, the largest radius of a ball centered at 0 that is contained
within V(A )). So, if ¥(t) = 0 for |[t|| > rpac(Ao), then (t) is certainly
supported within V(Ag). If X = A;, node A transmits a random vector
U € A; picked according to the distribution p; of Theorem 10. Similarly, if
Y = A4, node B transmits a random vector V € A, picked according to the
distribution p;. The rate of transmission from A or B is R@ = 1 7 log, M@,
The average transmit power per dimension at each node is P@ = _A:f(o)
in Theorem 10.

From Theorem 11, we see that an average transmit power per dimension
as low as

, as

453

d <Tpack (;\én) )) .

is achievable by a suitable choice of 1. It was shown in [?] (see also [?])
that the first positive zero of the Bessel function J, can be written as j, =
k + bk'/3 + O(k~'/3), where b is a constant independent of k. Therefore,

pd —

(3.22)

d
PY = (14 04(1)), (3.23)
Tpack” (Aéd) )

where 04(1) — 0 as d — oo, is achievable by a suitable choice of v using
Theorem 11.

Decoding: The relay R receives W = U+ V +Z, where Z is a Gaussian noise
vector with d independent N'(0, o) components, which are all independent of
U and V. The relay estimates A; @ Ay, to be the coset of A(()n) represented by



32 CHAPTER 3. PERFECTLY SECURE BIDIRECTIONAL RELAYING

QA (W), the closest vector to W in the lattice A™. The decoder mapping
is denoted by D(-).

Security: Since the noise Z is independent of everything else, Theorem 10
shows that W is independent of the individual messages X,Y. Hence, even
in the noisy setting, perfect security continues to be guaranteed at the relay
for any choice of the nested lattice code. It is worth reiterating that perfect
secrecy can be guaranteed irrespective of the noise Z. The distribution of
Z only determines the reliability of decoding, which in turn influences the
power-rate pairs achievable with perfect secrecy.

Reliability and achievable power-rate pairs: Let n(¥ denote the average prob-
ability that Q5 (W) is different from the coset to which U+V belongs. From
Definition 2, a pair (P,R) is achievable if for every ¢ > 0, there exists a se-
quence of nested lattice codes (A(d),A[()d)) for which the following hold for
sufficiently large d: R >R —§, P <P + § and n¥ < 6.

For a given nested lattice pair, Theorem 11 gives us the minimum average
transmit power per dimension that guarantees perfect secrecy (subject to the
condition that the characteristic function is supported within a ball of radius
rpack(f\é”))), and the pmf p; that achieves the minimum. The choice of the
nested lattices affects the reliability of decoding X @ Y at the relay, and
consequently determines achievable transmission rates.

To guarantee secure and reliable computation at the relay, we restrict the
class of nested lattice pairs (A™, Aén)) to those which satisfy the following
“goodness” properties®:

(G1) The sequence of coarse lattices, {Aé")}, is good for covering and AWGN
channel coding.

(G2) The sequence of dual lattices, {Aé") }, is good for packing.

(G3) The sequence of fine lattices, {A(™}, is good for AWGN channel coding.

Unlike prior work on nested lattices [?, 7, 7, ?] which only required {A(()n)}
and {A(M™} to satisfy properties (G) and (G3) above, we have the additional
requirement that the sequence of Fourier duals, {Aé")} must be good for
packing. While it is well established that there exist nested lattices satisfying
(G1) and (G3) [?, 7, ?], it turns out that the duals of most of these lattices

8For definitions of lattices good for covering, packing, and AWGN channel coding, the
reader is directed to Appendix C.
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also satisfy the goodness properties. In the next section, we will formally
describe an ensemble of lattices, also studied in [?, ?], and show that most
of the lattices in this ensemble satisfy all the above properties.

3.6.2 Good Ensembles of Nested Lattices with Good
Duals

Our description of the construction of the (A, A(()n)) nested lattice codes is
based on [?, ?]. Let d and k be positive integers with &k < d, and let ¢ be
a prime number. Let Z, denote the field of integers modulo ¢. The (d,k, q)
ensemble of lattices (in the terminology of [?]) is used in the construction. A
lattice from the (d, k, ¢) ensemble is sampled as follows:

1. Choose a k x d matrix G with entries from Z, uniformly at random.
Note that G need not be full-rank. However, the probability that G is
full-rank goes to 1 as (d — k) tends to oo [?]. The linear code over Z,
generated by G is denoted by C(G) = {(G"y) mod ¢ : y € Z}}.

2. Apply Construction A on the code C(G). This is done as follows:

(¢1) The codebook is scaled so that the scaled codewords lie within the
d-dimensional unit cube: C' = (1/¢q)C(G) = {(1/¢)x : x € C(G)}.

(c2) The lattice is obtained by tessellating the entire space, R, with
copies of C’, i.e., A(C) =C'+ Z*:={c+x:ce€ (' x € Z}.

From the construction, it is clear that Z¢ is a sublattice of A(C). More
detail regarding Construction-A lattices can be found in [?]. We would like
to make note of one important property of these lattices: if the generator
matrix of a Construction-A lattice A has rank d, then the effective radius of

A is given by [?]
1/d
r(¢+1
rer(A) = <7£§/—2¢c)> _ (3.24)

Choose a sequence of coarse lattices {AE,")}, each Aé”) selected uniformly
at random from the (d, k, q) ensemble, where k and ¢ may be functions of
d chosen beforehand. For d € {1,2,3,...}, let A be the generator matrix
of the coarse lattice A(()n). For this choice of {A(()n)}, we construct another
ensemble of lattices from which we pick the sequence of fine lattices {A™}.
This consists of two steps:
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(f1) Choose a sequence of lattices, {A d)} with each Agcd) coming from the
(d, k1,q1) ensemble of Constructlon—A lattices. As mentioned earlier,

Agcd) contains Z? as a sublattice. If the generator matrix of A has full

rank, then the number of cosets of Z¢ in A; is gh

2) The lattice AD s subjected to a linear transformation by the matrix
!
(AT to get A = (ADTRL .= {(AD)Ty .y € AV} .

We will call this ensemble of (A, A )) pairs as the (d, k, q, k1, q1) ensemble.
The lattice pair can be scaled approprlately so as to satisfy the average power

constraint. We have M@ = |[A™ /A ")| ! with probablhty tending to 1
as d — k tends to oo [?]. Hence, the rate of the (A, A code will be
@ _*
R\ = = log,(q1). (3.25)
We choose
k= ﬂod, and kl = ﬁld, (326)
for some 0 < By, f1 < 1/2, and g and ¢; are prime numbers chosen such that
d
lim — =0, and 7" <reg(AlY) <27 (3.27)
d—o0 aq1

for some 0 < rr(r?i)n < 1/4. It is possible to choose primes that satisfy the

above conditions, and we direct the interested reader to [?] for the details.
We then have the following lemma, which is proved in Appendix D.

Lemma 13. Let (A™), A[()") ) be a nested lattice pair chosen uniformly at ran-
dom from the (d, k,q,k1,q1) ensemble, with the parameters k, q, ki, q chosen

so as to satisfy (3.26) and (3.27). Then, the probability that (A("),A(()”))
satisfies (G1)—(G3) tends to one as d approaches infinity.

3.6.3 Achievable Rates

We now find achievable transmission rates for reliable and secure computa-
tion of X @Y at the relay. The analysis closely follows that in [?, 7, 7]. As
defined in Section 3.6.1, let D(W) be the estimate of X &Y made by the
relay; to be precise, D(W) is the coset of A(()”) to which Q) (W) belongs.
This is the same as the coset represented by @ ,m) ([W] mod A(()n)).
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Figure 3.11: Different cosets of Ag in A. The coset representative of A; within
V(AQ) is )‘j'

Each lattice point in A N V(A(()n)) is a coset representative for a coset

of A(()n) in A®. This is illustrated in Fig. ??. Suppose that A; and A are
the cosets which represent the messages X and Y, respectively. Let X =
[U] mod A(()") and Y = [V] mod Aén) be the coset representatives of A; and

Ay, respectively. Then, A; & Ay has [ X + Y] mod A(()”) as its representative.
Therefore, the estimate D(W) has W = [Q ) (W)] mod A(()") as its coset
representative. This is equal to W = [Q o ([W] mod AT mod A, Let
W = [W] mod A Then, W = [Q i (W)] mod AL"”. As a consequence of
the transmitter-receiver operations, the “effective” channel from X,Y to W
can be written as follows [?]:

W = [U+V +Z] mod AJ"
= [([U + V] mod A((]n)) + Z} mod A"

= [([X + Y] mod A(()n)> + Z} mod A(()n).

A channel of the form W = [X + N] mod A{"”, where N denotes the
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Figure 3.12: MAC phase of the bidirectional relay and equivalent MLAN
channel representation.

noise vector, is called a Aé")—modulo lattice additive noise (A(()n)—MLAN) chan-
nel [?]. The random Vector W behaves like the output of a point-to-point
transmission over a A ) MLAN channel, with the transmitted vector being
[X +Y] mod A ). Looking from W, the “effective” channel is a A(n -MLAN
channel, and the relay has to decode [X + Y] mod A, (n) reliably from W.
This is illustrated in Fig. ??7. We will use the properties of the Aén -MLAN
channel to determine achievable rate regions for our coding scheme.

We choose a sequence of nested lattice pairs that satisfy (Gy)—(G3), with
each nested lattice pair coming from a (d, k, ¢, k1, q1) ensemble, where k, ¢, k;
and ¢ satisfy (3.26) and (3.27). Using the coding scheme of Section 3.6.1,
we can achieve perfect secrecy. The proposition below provides us with the
means of determining the rates achievable with this coding scheme.

Proposition 14. Let M > 0 be a constant, and {A(”),A(()")} be a sequence
of nested lattice pairs that satisfy (G1)—(Gs), and scaled so as to satisfy
reﬂc(A( )) VAM. Then, using the coding scheme of Section 3.6.1 with this
sequence of nested lattice pairs, any rate less than ;log2 (é\/’) 1S achievable
with perfect secrecy.

The proposition can be proved along the same lines as [?, Theorem 4];
we omit the details.
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3.6.4 Relating Achievable Rates to Transmit Power

From (3.23), we know that as long as the average transmit power per di-

mension is less than (d/ rpaCkZ(Aén))> (1 + 04(1)), we can guarantee perfect

secrecy at the relay. From Proposition 7?7, we see that as long as the transmis-
sion rate is less than %logQ(reff?(Aén)) /(da?)), the relay can reliably compute
X @Y from W. In order to achieve positive rates, we need reﬁc(A(()")) to
grow at least as fast as V/d, i.e., reg(Aén)) = Q(+/d). Furthermore, to sat-
isfy an average power constraint, we require rpack(fX(()n)) = Q(v/d). The rate
is an increasing function of reﬁ(A(()”)), and the average transmit power per
dimension is a decreasing function of rpack(f\(()")). Since we want to maxi-
mize the rate for a given power constraint, we would like both reg(A(()”)) and
rpack(f\(()n)) to be as large as possible. However, for any lattice A(()”), we have
rCOV(Aén))TpaCk(Aé")) < 7d [?, Theorem 18.3], and since reg (A(()n)) < rCOV(A(()n)),
we get Ter(AL)roacc(AYY) < 7d. Hence, to obtain positive rates and at the
same time satisfy the power constraint, both reg(AT”) and 7pae(AT”) must
grow roughly as v/d. Therefore, we seek lattices satisfying properties (G1)-
(Gs), for which the product reg(AT)rpaa(A) is close to the upper bound
of md.

For a sequence of Construction-A coarse lattices satisfying (G;) and (Gs),
we can find an asymptotic lower bound for (1/d)reg(AT))rpaac(AS),7 as the
following theorem shows.

Lemma 15. Let {Aén)} be a sequence of coarse lattices, with each A(()n) chosen
from a (d,k,q) ensemble and k,q satisfying (3.26) and (3.27). If {Aén)}
satisfies conditions (G1)—~(Ga), then,

(3.28)

Proof. See Appendix E. ]

"The product Teff(A(()n))TpaCk(A(()n)) is invariant to scaling of A(()n). This is because, for

a constant a > 0, reff(aAén)) = areff(A(()n)), and if A" = ozA(()n), then the Fourier dual of A’/
is (1/a)A(™.



