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ABSTRACT   

Aircraft type recognition remains challenging, due to their tiny sizes and geometric distortions in large-scale 

panchromatic satellite images. This paper proposes a framework for aircraft type recognition by focusing on shape 

preservation, spatial transformations, and geospatial attributes derivation. First, we construct an aircraft segmentation 

model to obtain masks representing the shape of aircrafts by employing a learnable shape-preserved and deformable 

network in the mask RCNN architecture. Then, the orientation of the segmented aircrafts is determined by estimating the 

symmetrical axes using their gradient information. Besides template matching, we derive the length and width of 

aircrafts using the geotagged information of images to further categorize the types of aircrafts. Also, we present an 

effective inferencing mechanism to overcome the issue of partial detection or missing aircrafts in large-scale images. The 

efficacy of the proposed framework is demonstrated on large-scale panchromatic images with ground sampling distances 

of 0.65m (C2S). 
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1. INTRODUCTION  

Remote sensing images with high spatial resolution are able to capture the objects with their structural properties at 

finer level often covering a large area on the earth. The utilization of these images is greatly promoted in the 

development of both civil and strategic applications. In general, the analysis of tiny objects like aircrafts in large-scale 

high resolution panchromatic images is performed through detection [1]. Undoubtedly, finer categorization or new 
findings of such objects will help in improving the level of interpretation and decision making process. Aircraft type 

recognition is one such task that identifies the aircrafts along with their type. However, the lack of spectral information 

in the panchromatic images exhibits difficulty in separating the objects from their background. In addition, some issues 

such as shadow of aircraft, aero bridge attachment, and oil spills on the ground pose challenges in deriving the precise 

shape of aircrafts. Also, the presence of inherent geometric distortions in the remote sensing images makes the type 

recognition task further complex. 

A typical C2S [2] image with a ground sampling distance (GSD) of 0.65m covering a length of 28km with 10.2km 

swath will result in 790 mega pixels 1.5 GB. These kind of large-scale images are not viable for inferencing directly 
due to imperceptibility of tiny objects and limitation on the computation capability. Apparently, tiles obtained by 

partitioning the large-scale image as input for inferencing would manifest partial objects at the borders of the tiles. The 

issues, such as partial detection or complete object missing, besides complex background necessitate an effective 

mechanism for inferencing the large-scale images. 

Existing methods for aircraft type recognition in remote sensing images have explored the use of image features [3, 
4, 5], template matching [6, 7, 8], and deep learning concepts [9, 10]. The convolutional neural networks (CNN) in most 

of the existing instance segmentation methods [11, 12, 13, 13, 15, 16] are not effective in handling the geometric 

distortions and influenced by shadows, aero bridges, etc. To overcome these issues, the proposed framework focuses on 

handling distortions using spatial transformations, preserving shape of masks with fusion blocks, and deriving geospatial 

attributes by combining geotagged information. We construct an aircraft segmentation model by employing deformable 

convolutions in mask R-CNN framework [12] to exploit aircraft shape information thereby to improve localization 

accuracy at mask-level. The predicted aircraft masks are used to determine the type of an aircraft by a simple template 

matching process. We demonstrate the efficacy of the proposed framework on C2S [2] panchromatic images. We also 

present an inferencing mechanism to recognize the types of aircrafts effectively in large-scale remote sensing images.  



 

 
 

 

The main contributions of this paper are: 

 We construct an aircraft instance segmentation model on C2S panchromatic images by employing deformable 

convolutions. 

 Developed a method to generate a shapefile by geo-tagging the segmented aircrafts with the help of the metadata 

of image for better interoperability. 

 A mechanism to derive spatial attributes of the aircrafts such as their type, orientation, length, and width is 

presented. 

 An inferencing mechanism is established to derive the spatial attributes of the segmented aircrafts effectively in 

large-scale remote sensing images. 

The rest of the paper is organized as follows. Sections 2 presents the proposed framework for aircraft type recognition 

in large-scale panchromatic remote sensing images. The experimental results and their analysis are provided in Section 3. 

Finally, Section 4 concludes this paper. 

 

2. PROPOSED FRAMEWORK FOR AIRCRAFT TYPE RECOGNITION 

Fig. 1 shows the proposed framework for aircraft type recognition in large-scale remote sensing images. It consists of 

two phases, namely, training and inference phase. In training phase, we predict the masks representing the shape of 

aircrafts using aircraft instance segmentation model, which is described in Section 2.1. We also devise an inferencing 
mechanism to ensure no partial detections or objects missing due to partitioning of large-scale images. Finally, the 

predicted masks and the derived geo-spatial attributes such as length and width of aircrafts are used for type recognition.  

 

 
 

Figure 1.  Block diagram of the proposed framework for aircraft type recognition using geospatial attributes. 

2.1 Aircraft segmentation model 

We employ deformable convolutions with fusion blocks to improve the mask head in the construction of an effective 

aircraft instance segmentation model, which is illustrated in Fig. 2. 

2.1.1 Deformable convolutions 

Assume that  and  represent the weight and offset for  location, respectively, for a convolutional kernel of L 

sampling locations. A  convolutional kernel with dilation 1 is defined  and . 

Let  and  denote the features at location  from the input feature maps  and output feature maps , 
respectively. The deformable convolution [17] can be formulated as                                                                        

.                                                                   (1) 

Here,  is the learnable offset for the  location. These deformable convolutions capture the spatial transformations in 
the objects by learning the sampling grid along with location offsets. However, the earlier feature maps along with 

additional convolutional layers determine these offsets. Hence, the deformation can be adaptively conditioned locally 

and densely on input features. 



 

 
 

 

 

Figure 2.  Aircraft instance segmentation model by employing deformable convolutions for predicting precise masks. 

 2.1.2 Shape preserving mask head 

Let  and   be the region of interest features for shape prediction and mask prediction, respectively. We perform 

RoIAlign by setting the larger resolution for  than  to have better spatial information for shape prediction. Then, the 

obtained  (same resolution as ) after downsampling   with a strided  deformable convolution is used in 

feature fusion as shown in Fig. 2. The  features are fed to four consecutive  deformable convolutions to get 

mask features . Subsequently, shape features  are fused with  and fed to 2 consecutive  deformable 
convolutions. 

a) Mask-to-shape fusion:  containing pixel-wise object information is integrated with  to predict object shapes. 
The fusion block is represented as 

 ,                                                                         (2)  

where,  and  denote the output shape features and 1  convolution, respectively.       

b) Shape-to-mask fusion: The fusion of final shape features with mask features enriches the mask features and guides 

for better mask prediction. This block is identical to mask-to-shape fusion.    

c) Shape loss function: We formulate the shape loss function  as  

 ,                                                    (3) 

Where  and  represent the predicted shape and ground truth of an aircraft, respectively.  And 𝛼 

and 𝛽 denote height and width of predicted shape, respectively. The hyper-parameter λ denotes weight of dice loss (we 

use λ = 1 in experiments). Here,  denotes the binary cross-entropy loss and Dice loss is expressed as  

 ,                                                                         (4) 

where  denotes the  pixel &  (unity term) is set to 1. To further enhance the features for both mask and shape 

predictions, we employ joint loss as 

                                                                       (5) 

Here, , , represent classification, regression and mask losses which are taken from mask R-CNN. And, 

 denotes shape loss given in Equation (3).                                                



 

 
 

 

2.2 Inference on large-scale remote sensing images 

To avoid memory overheads, inference is performed on the tiles by partitioning the large-scale image into the tiles of 

size used in training. However, an effective inferencing mechanism is required to avoid the partial object 

detection/missing objects at the borders of the tiles as shown in Fig. 3. We describe the partitioning scheme (with no 

offsets) for a given image I of width W and height H during inference as: 

,                                                                           (6) 

where represents union operation, i and  j refer indices to locate cells along X and Y direction, respectively. And, I(i ,j) 

denotes a tile of size ( ) that starts at the cell (i, j). The values  and  represent the number of tiles along X and 

Y direction, which are computed as  and  , respectively. Similarly, other three partitioning schemes are 

performed by offsetting  horizontally, vertically, and in both the directions to ensure sufficient overlaps across the 

tiles. 

 
 

Figure 3.  Issues with large-scale C2S [2] images. (a-c): complete object missing. (d-f): partial detection. 

2.3 Aggregation of bounding boxes 

Each of the above four partitioning schemes provides a collection of bounding boxes and corresponding masks of 

the aircrafts separately over the same image. We ignore storing both partial and complete bounding boxes of the aircrafts 

on either side of vertical or horizontal borders of the tiles with a threshold of  . However, these ignored bounding 

boxes of one partitioning scheme, by virtue of their overlaps, are available in anyone of the other partitioning schemes. 

This ensures the inclusion of bounding boxes of the complete objects from the four sets and exclusion of the partial 

bounding boxes as well at the borders.  

2.4 Deriving geospatial attributes of aircraft 

The predicted mask of the aircraft and their gradient information help in determining its symmetry [18]. The vector 

describing the gradient of a surface  is defined by 

  .                                                                          (7) 



 

 
 

 

And, its orientation (ϕ) with domain [0, 2 ) is given by . We use Fourier transform to determine the 

orientation of symmetrical axis by searching the convolution peaks of the gradient orientation histogram. Subsequently, 

its position is determined based on the center of gravity of the aircraft mask. The accuracy of the orientation of the 

symmetrical axis is influenced by the noise in the image. Hence, the predicted mask of the aircraft alone is considered by 

suppressing the outside pixels uniformly. The symmetrical axis and its orientation information of the aircraft are used to 

rotate the mask upright. The length and width of aircraft are obtained by multiplying the number of pixels in Y-axis and 

X-axis with GSD of the image, respectively. 

2.5 Aircraft type recognition 

We determine the type of an aircraft based on IoU value between the predicted aircraft mask and the reference templates 

given in Fig. 4. Additionally, the length and width are used to further categorize the aircrafts of the same type. The 

derivation of geospatial attributes eliminates the need of separate templates for the same type of aircrafts with different 

length and width. Further, we use metadata to geotag both bounding boxes and the masks. This metadata consists of 

georeferenced corner coordinates of the large-scale input image that helps to store the identified aircrafts instance-wise 

while generating a shapefile.  

 

 
 

Figure 4.  Reference templates of aircrafts. Row 1 shows 7 types of sample aircrafts from C2S PAN images. Row 2 depicts 

corresponding binary templates. Row 3 & Row 4 indicate length & width of aircrafts. Row 5 indicates aircraft type. 

 

3. EXPERIMENTAL RESULTS 

This section presents both quantitative and qualitative analysis of the proposed framework to demonstrate its efficacy 

on large-scale panchromatic remote sensing images. 

3.1 Datasets and implementation details 

We consider 5600 C2S [2] panchromatic aircraft scenes of size 512  512 with ground sampling distance (GSD) of 
0.65m for all the experiments. A ratio of 80% - 20% is considered for training and validation. We perform data 

augmentation in the training process in order to accommodate the characteristics of remote sensing images in learning 

the various features.  In particular, we explore several data augmentation techniques which include horizontal flipping, 

upside down flipping, rotation from −90
o 

to 90
o
, scaling from 0.5 to 1.5, and shear range −16 to 16. To have fair 

comparison, we conducted all the experiments with ResNet-101 backbone architecture by setting the hyper-parameters: 

number of iterations = 1.2k; learning rate = 0.01; batch size = 1 image; weight attenuation = 0.0001; optimizer as SGD 

with a momentum of 0.9. The performance of aircraft segmentation model is validated on 1400 aircrafts from 1120 

scenes. 

3.2 Quantitative analysis of aircraft segmentation model 

In this section, we compare the performance of our proposed aircraft segmentation model with the state-of-the art 

instance segmentation models. The evaluation is based on average precision (AP) metric, specifically for the threshold of 

0.5 & 0.75, to indicate a predicted bounding box if its Inter-section over Union (IoU) is greater than 0.5 or 0.75.  Also, 

we use mean length error (Lerror) and mean width error (Werror) to evaluate the proposed segmentation. Table 1 provides 

the performance comparison of the proposed method with state-of-the-art instance segmentation methods. It can be 
observed from Table 1 that our proposed model outperforms existing state-of-the art approaches by a margin of 6%. Also, 



 

 
 

 

it can be observed that the proposed method is able to bring down the mean length and width errors by 5 to 6 pixels in 

comparison to state-of-the-art-methods. These small errors are accounted for the fragmented nose/tail/wings. The results 

in Table 1 signify the robustness of our proposed model and its ability to incorporate the characteristics of even more 

harder examples in the segmentation process. Fig. 5 shows the confusion matrix among the 7 types of aircrafts from C2S 

scenes from our approach. As it can be observed from Fig. 5, the type-wise recognition is near to the overall average 

precision. This ensures that our model is able to predict the shapes of all 7 types of aircraft equally well. This also 

indicates that our proposed method effectively preserves the shape of the aircrafts even along their nose and wings. Thus 

the derived geospatial attributes from our approach are effective for aircraft type recognition. 

Table 1. Performance comparison of the proposed method with state-of-the-art approaches on C2S scenes. 

 
Average Precision 

(AP) (%) 
AP@50 (%) AP@75 (%) Lerror (m) Werror (m) 

FCIS [11] 79.42 88.26 76.49 12.64 12.03 

Mask-RCNN [12] 82.07 90.27 78.93 11.25 10.56 

MS RCNN [14] 83.66 91.54 81.14 10.11 9.98 

PA-Net [13] 85.49 92.03 82.35 9.54 8.87 

HTC [15] 89.24 92.76 85.63 8.92 8.04 

Proposed 

method 
95.43 97.34 90.72 5.23 4.57 

 

 
Figure 5.  Confusion matrix from the proposed approach on 7 types of aircrafts over C2S panchromatic remote sensing images. 

3.3 Qualitative results 

Fig. 6 provides the aircraft segmentation output from Mask-RCNN and our proposed method on a C2S scene. It can 

be observed that our proposed method effectively preserves the shape of the aircrafts even along their nose and wings. 

Thus the derived geospatial attributes from our approach are effective for aircraft type recognition. 

 



 

 
 

 

 
Figure 6.  Aircraft segmentation outputs from C2S panchromatic remote sensing images. 

3.4 Evaluation of inference mechanism 

Table 2 presents the evaluation of four partitioning schemes and their aggregation on fourteen large-scale C2S 

panchromatic images. The aggregate method is able to overcome the issues, such as the inclusion of partial objects and 

exclusion of the complete objects at the borders of the tiles. We considered two cases for evaluation, in which one case 

(indicated with *) does not consider partial bounding boxes (PBB) as they are not useful for the recognition process. The 

second case includes both PBB and Full bounding box (FBB). It is evident from the average values of precision, recall, 

and F1- scores that the aggregate method is able to detect the aircrafts completely, without leaving a possibility for 

partial/missing objects along the borders of tiles. Thus, the description of objects is improved relatively by minimum 4% 

to maximum 9% with the aggregation of four schemes. This shows the efficacy of the proposed framework in identifying 

the aircrafts and deriving their spatial attributes in large-scale panchromatic remote sensing images.  

Table 2. Performance evaluation of our inference mechanism on large-scale C2S panchromatic images. 

Partitioning 

Schemes 

False 

Positive 

False  

Negative 

True Positive 

(FBB+PBB) 
Precision* Recall* 

F1 

Score*  
Precision  Recall 

F1 

score 

Scheme1 28 14 
180 

(156+24) 
0.847 0.917 0.881 0.865 0.927 0.895 

Scheme2 41 18 
176 

(157+19) 
0.792 0.897 0.841 0.811 0.907 0.856 

Scheme3 36 23 
171 

(146+25) 
0.802 0.863 0.831 0.826 0.881 0.852 

Scheme4 30 21 
173 

(153+20) 
0.836 0.879 0.857 0.852 0.891 0.871 

Proposed 

method 
28 4 190 (190+0) 0.871 0.979 0.922 0.871 0.979 0.922 

 

4. CONCLUSION 

In this paper, we proposed a novel framework for effective aircraft type recognition in large-scale remote sensing 
images. Initially, we construct a learnable shape-preserved and deformable aircraft segmentation model to handle 



 

 
 

 

geometric distortions in remote sensing images. Specifically, we employ deformable convolutions in two fusion blocks 

to improve the quality of the predicted masks. The metadata of images is used to derive the length and width in addition 

to geotagged masks that represent aircraft shapes. Finally, these geospatial attributes are used to recognize aircraft type 

by comparing with the reference templates. We also presented an effective inferencing mechanism to avoid the partial 

detections/missing of the aircrafts at the borders of tiles in the partitioning process. The efficacy of the proposed method 

is demonstrated on large-scale C2S panchromatic images. This approach would also be helpful to catalog the segmented 

aircrafts with their geospatial attributes, if they are not found in reference templates. 
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