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Abstract—Action recognition requires modelling the interac-
tions between either human & human or human & objects. Re-
cently, graph convolutional neural networks (GCNs) are exploited
to effectively capture the structure of action by modelling the
relationship among entities present in a video. However, most of
the approaches depend on the effectiveness of object detection
frameworks to detect the entities. In this paper, we propose
a graph-based framework for action recognition to model the
spatio-temporal interactions among the entities in a video without
any object-level supervision. First, we obtain the salient space-
time interest points (STIP) that contain rich information about
the significant local variations in space and time by using the
Harris 3D detector. In order to incorporate the local appearance
and motion information of the entities, either low-level or deep
features are extracted around these STIPs. Next, we build a graph
by considering the extracted STIPs as nodes and are connected
by spatial edges and temporal edges. These edges are determined
based on a membership function that measures the similarity of
entities associated with the STIPs. Finally, GCN is employed on
the given graph to provide reasoning among different entities
present in a video. We evaluate our method on three widely used
datasets, namely, UCF-101, HMDB-51, SSV2 to demonstrate the
efficacy of the proposed approach.

Index Terms—Action recognition, STIP, GCN, graph represen-
tations

I. INTRODUCTION

Action recognition, one of the video understanding tasks is
employed in various fields such as smart surveillance, human-
computer interaction, autonomous vehicles etc., to learn the
spatio-temporal interactions between the human and objects
occurring in a given video. However, modeling of these
interactions is challenging because of two key factors. Firstly,
the typical issues like occlusion, illumination conditions, view-
point variations etc., cause difficulty in perceiving/identifying
the entities present in a video. Secondly, uncertainty among
the actions due to the similarity in either spatial arrangement
or temporal information. For example, two actions considered
from UCF-101 dataset such as, ‘apply lipstick’ and ‘apply
makeup’ have a similar spatial arrangement i.e., applying
makeup/lipstick on the facial regions as shown in Fig. 1. Like-
wise the similar motion cues between the ‘table tennis shot’
and ‘tennis swing’ actions create ambiguity while recognising
these actions (see Fig. 2).

In order to overcome these issues, several methods in lit-
erature have been explored varying from the traditional hand-
crafted to deep learning approaches. The traditional methods
[1] extract low-level features such as HOG, HOF, and MBH
to obtain the local appearance and motion information. A

(a) Apply Eyemakeup (b) Apply lipstick

Fig. 1: Examples of actions from UCF-101 exhibiting similar
spatial arrangement

unique representation of an action is acquired by encoding
these features using various aggregation frameworks [2], [3]
for action classification. Whereas, the deep learning methods
like two-stream networks [4], 3D-CNNs [5], and temporal
stream networks (TSNs) [6] exploit the concept of end-to-
end learning to capture the spatial and temporal information.
Although these frameworks achieve better performance for the
actions exhibiting high inter-class variability, (eg. ‘Archery’,
‘basket ball’) they fail to distinguish between the actions with
low inter-class variability and high intra-class variability (eg.
‘playing sitar’ and ‘playing cello’). This is because, the deep
learning methods extract the global features of a video and
fail to model the relationship among the entities present in a
scene.

Recently, graph convolutional networks (GCN) are exploited
to effectively capture the structure of action by modeling the
relationship among entities present in a video. The interaction
of the entities in a video is formulated as a graph and fed
to GCN to classify the actions. The existing works [7], [8]
consider the selection or extraction of entities as the crucial
part in action recognition. In [9], Yan et al, consider the
skeletal joints locations as entities and builds a graph to
model the dynamics of the human body skeletons in order
to recognize the human actions. However, the contribution of
different joints is distinct for various actions. Hence, Ahmad
et al. [10] proposed an attention mechanism to attend only
to those joints that contribute to the corresponding actions.
Whereas, the region-based approaches [7], [8], [11] employ the
off-the-shelf object detection framework to detect the entities
present in a scene. Wang et al. [7] represent a video as space-
time graphs to model the temporal dynamics and contextual
relationship between the human and objects. The nodes of a
space-time graph are the region proposals extracted from the
region proposal network (RPN) and these nodes are connected
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(a) table tennis shot

(b) tennis swing

Fig. 2: Illustration of actions from UCF-101 having similar motion cues

based on (i) similarity of appearance and (ii) spatio-temporal
relations. Along the lines of [7], Mavroudi et al. [12] proposed
visual-symbol graphs to capture the visual and semantic cues
between the human and objects by constructing two graphs. A
visual graph to model the spatio-temporal interactions between
the actor & objects and a symbolic graph to capture the
semantic relationships between them.

However, the existing methods discussed above have the
following limitations: (i) Skeletal-based approaches are sen-
sitive to view-point variations and fail to model the actions
involving interactions between the human and objects (eg.
playing violin, playing guitar), (ii) Region-based methods
depend on the effectiveness of the object detection framework
involved during the extraction of salient regions of entities
present in a scene.

In this paper, we propose a graph-based framework for
action recognition to model the spatio-temporal interactions
among the entities in a video without using any object-level
supervision. We first obtain the salient space-time interest
points (STIP) that contain the rich information about the
significant local variations in space and time by using Harris
3D detector [13]. In order to incorporate the local appearance
and motion information of the entities, either low-level or deep
features are extracted around these STIPs. Next, we build a
graph by considering the extracted STIPs as nodes and are
connected by spatial edges and temporal edges. These edges
are determined using a membership function that measures the
similarity of entities associated with the STIPs. Finally, GCN
[14] is applied on the given graph to provide reasoning among
different entities present in a video. We evaluate our method
on three widely used datasets, namely, UCF-101, HMDB-51,
something something v2 (SSV2) to demonstrate the efficacy
of the proposed approach.

The main contributions of this paper are:
• We construct a graph whose nodes are space-time interest

points (STIPs) obtained from the Harris 3D detector
and are connected based on the appearance and motion
dynamics of these interest points.

• We investigate the effectiveness of graph convolutional
neural networks (GCNs) on the constructed graph to
model the interactions among the entities present in a
video.

• The efficacy of the proposed approach is demonstrated
on three common datasets, namely, UCF-101, HMDB-
51, and SSV2. These datasets contain both human-human
and human-object interactions with similar spatial and
temporal properties.

II. RELATED WORK

Typically, most of the existing works in literature employ
either visual models or graphical models to learn the prominent
spatio-temporal representations essential for action recogni-
tion. In this section, we explore various approaches in visual
and graphical models in detail.

A. Visual models for action recognition

Traditional visual models focus on manually designing the
features that contribute to the discriminative representation
of actions. These hand-engineered features such as improved
dense trajectories (IDT) [1], space-time interest points (STIP)
[15], etc., contain the descriptors that are rich in appearance
and motion information. The derived descriptors are encoded
using various aggregation frameworks [2], [3] to obtain a
video-based representation for action classification. On the
other hand, the deep learning approaches focus on learning
the deep features from a video in an end-to-end fashion elim-
inating the need for hand-engineering. Multi-stream networks
[16], one of the popular deep learning methods train the spatial
and temporal streams independently to capture the appearance
and motion representations. The multi-stream network learns
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Fig. 3: Block diagram of the proposed approach (best viewed in color).

the appearance information from static video frames and tem-
poral information from the local motion vectors derived from
the optical flow frames. However, the multi-stream networks
train the temporal and spatial streams independently leading to
the lack of interaction among the streams and fail to model the
long-term temporal dynamics of an action which is essential
for efficient recognition of actions. To overcome this issue,
recurrent neural networks (RNN) [17], 3D-CNN [18], [19]
have been proposed. As these models are difficult to train
and computationally expensive, Yang et al [20] proposed an
asymmetric 3D convolutional network to reduce the number
of parameters and computational complexity. However, the
obtained representation from these frameworks is the global
representation of a whole scene and fails to capture the spatio-
temporal interaction between the entities present in a scene.

B. Graphical models for action recognition

Graph networks have been employed in many domains [21],
[22] where the reasoning between different entities is desired.
Since a definite structure is not present in video for vision
tasks, the selection of atomic elements for representing graph
nodes is important. In order to mimic the definite structure,
several approaches [23], [24] have considered the human
skeleton as an explicit structure to model the dynamics of
the human body during the course of action. Yan et al [9]
were first to propose a spatio-temporal graphical approach for
skeleton-based action recognition. The spatio-temporal graph
consists of skeletal joints as nodes and edges are connected
based on the natural connectivity of joints. Huang et al [25] in-

corporated the multi-granularity information by proposing the
split-transform-merge concept in graph convolutional networks
(GCN). This model aggregates the multi-scale information
from spatial and temporal paths to improve the performance of
GCNs in action recognition. Later Zhang et al. [26] integrated
the contextual information into graphs by providing informa-
tion of all other nodes of a human skeleton for increasing
the receptive field of the local graph convolution operation.
This method eliminates the need for stacking multiple layers
to incorporate long range dependencies among the nodes.
Likewise, to enhance the flexibility of receptive fields of
graphs, shift-GCNs [27] incorporating point-wise convolutions
and shift operations were introduced. These operations are
lightweight and can reduce the computational complexity of
GCN-based methods. However, the skeletal-based approaches
are sensitive to view-point variations and fail to model the
actions involving interactions between the human and objects.

In order to overcome the above limitation, space-time video
graphs [7] are introduced to model the interactions between
human and objects. These graphs are constructed with the
region proposals generated from off-the-shelf object detection
frameworks as nodes and are connected based on appearance
and motion relationships. Following this, Ji et al. [29] proposed
a method to learn the complex interactions between sev-
eral objects without increasing the computational complexity.
These interactions are captured by learning the higher-order
relationships among the objects. Similarly, Mavroudi et al.
[12] introduced a hybrid graph neural network to capture
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the semantic and contextual information for understanding
the interactions among the entities in a video. The hybrid
graph is built based on the spatio-temporal interactions &
semantic representation learnt by a visual graph and symbolic
graph, respectively. However, these approaches depend on
the effectiveness of the object detection framework involved
during the extraction of salient regions of entities present
in a scene. To overcome this, Duta et al. [28] presented
a method that learns the salient regions responsible for an
action dynamically eliminating the need for object detectors.
These regions are considered as graph nodes and graph neural
networks are applied to model the reasoning for interactions
among the objects.

III. PROPOSED METHODOLOGY

To overcome the above limitations, we propose a graph-
based framework to model the interactions between human and
objects for efficient recognition of actions without any object-
level supervision as shown in Fig. 3. The proposed method-
ology consists of three modules, namely, feature extraction,
graph formulation, and graph convolution networks (GCNs)
for classification.

A. Feature extraction
We extract spatio-temporal features from each input video

containing uniformly sampled T frames to represent an action.
These features are extracted at specific locations (also known
as interest points) where variations across space and time are
significant. The procedure for detecting these interest points
and extraction of features are described in the following sub-
sections.

1) Space-time interest points (STIP) descriptors: The
linear scale representation F (x, y, σ2

v , τ
2
v ) for an input

video V (x, y, t) is given by convolving a Gaussian kernel
G(x, y, σ2

v , τ
2
v ) with V as

F (x, y, σ2
v , τ

2
v ) = V (x, y, t) ∗G(x, y, σ2

v , τ
2
v ), (1)

where, σ2
v and τ2v are the variations across space and time

and ‘*’ denotes a convolution operator. The aim of Harris 3D
corner detector is to find the locations where V has significant
variations in three directions. Such locations are determined
by convolving the second-moment matrix S with a Gaussian
function g(x, y, σ2

k, τ
2
k ) of spatial and temporal variance, σ2

k

& τ2k , respectively.

S = g(x, y, σ2
k, τ

2
k ) ∗

 F 2
x FxFy FxFt

FxFy F 2
y FyFt

FxFt FyFt F 2
t

 . (2)

where the second order derivatives are given by

F 2
x = ∂2F

∂x2 F 2
y = ∂2F

∂y2 F 2
t = ∂2F

∂t2

FxFy = ∂
∂x

(
∂F
∂y

)
FyFt =

∂
∂y

(
∂F
∂t

)
FxFt =

∂
∂x

(
∂F
∂t

)
The largest eigen values λ1, λ2, and λ3 of S signify the

interest points. These are detected by Harris corner function
using

H = λ1λ2λ3 −m(λ1 + λ2 + λ3)
3. (3)

Fig. 4: The K ×K image cropped around the interest points.

Finally, local features such as Histogram of oriented gradients
(HoG), Histogram of optical flow (HoF) collectively known as
space-time interest points (STIP) descriptors (of 162 dimen-
sion) are extracted around these detected interest points to
obtain the appearance and motion information, respectively.

2) Deep features: In order to obtain efficient spatio-
temporal features, we propose to extract deep features from
big transfer (BiT) model [31]. The BiT model is a ResNet
architecture with a group normalization layer [30] pre-trained
on ImageNet-21K dataset. The input to this model is an K×K
region that is cropped around the interest points as shown in
Fig. 4 to extract the local appearance and motion information.
Finally, the penultimate layer features (of 2048 dimension)
of BiT model are considered to generate a graph which is
explained in the next sub-section.

B. Graph formulation

In this sub-section, we construct a graph G = (N,E) from
the obtained interest points R = {ri ∈ (x, y, t)}ni=1 with
feature vectors H = {hi}ni=1 to model the relationship among
the entities present in a video. Here, N represents the set of
STIPs and E gives the set of edges defined by a membership
function eij computed as

eij =
M(hi, hj)

||ri − rj ||2
. (4)

Here, M(hi, hj) is a Gaussian function that measures the
similarity between two interest points ri&rj . The very high
value of eij represents that either the interest points are
extremely close to each other or the features captured by STIPs
are the same during feature extraction. Likewise, the value of
eij is very low when the interest points are far from each
other. Either of the above cases do not provide any significant
information regarding the interaction among entities. Hence,
we threshold the edge values by

Eij =

{
1, if eij > eth

0, otherwise.
(5)
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Fig. 5: Spatio-temporal graph depicting possible edges defined by membership function for a vertex (best viewed in color).
The vertex (in red) is an interest point detected by Harris 3D corner detector. This is connected to other possible nodes through
spatial edges (blue solid lines) and temporal edges (green dotted lines).

Here, eth is usually considered to be mean. And, the nodes
within the same frame and across the frames are connected
using the above function. Hence, the adjacency matrix E
consists of both spatial and temporal edges as shown in Fig.
5.

C. Graph Convolutional networks (GCN)

Given the generated graph from previous step, we employ
GCN to classify different actions as shown in Fig. 6. Our
GCN model contains series of graph convolutions and pooling
layers followed by a readout layer at the end to classify actions
present in a video. The graph convolution for lth layer is

Ql = EX l−1W l, (6)

where W l is a learnable weight matrix, X l are the features
from hidden layer l, and X0 = H i.e., input spatio-temporal
features. The graph convolutions approximated by spectral
propogation rule is given as

Ql = σ(D̃−1/2ẼD̃−1/2X l−1W l). (7)

Here, D̃−1 is a degree matrix for Ã = A + I , and σ is the
ReLu activation function. The convolutional layer is followed
by a pooling layer to coarsen the graph. Later, a readout is
applied to aggregate the node representations into a graph
representation. Any readout operations like sum, mean, max,
min are used. However, we consider mean as our readout
operation in order to eliminate any outliers. Finally, we predict
y by using the multi-layer perceptron and softmax layer on the
obtained graph representation.

IV. EXPERIMENTAL RESULTS

The experiments are executed on 4 Tesla M60 GPUs.
The spatial and temporal variances of a Gaussian kernel are
considered to be σ2

v = 8, τ2v = 8 during detection of interest
points. Also, m is set to 0.005. We train a 2 layer GCN
for 200 epochs with initial learning rate of 0.01 and dropout
of 0.5. The size of image cropped to extract deep features

is set to 32 × 32. The increase of cropping size has led to
decrease in performance due to addition of noise either by
background or irrelevant objects in a video. The comparison
with existing state-of-the-art methods and evaluation of the
proposed approach on different datasets are discussed in the
following sub-sections.

A. Datasets

1) UCF-101: It is a well-known standard action recognition
dataset consisting of 101 actions [32]. The 13320 videos
are collected from Youtube to recognise actions in a natural
real-world environment. It contains actions of human & ob-
ject interaction, human & human interaction, common body
movements, etc. This dataset poses several challenges such as
view-point variation, background clutter, occlusion, presence
of diverse objects, and large fluctuations in camera movement.

2) HMDB-51: It is another widely used dataset used for
recognising actions from realistic movies and YouTube videos
[33]. The HMDB-51 dataset contains 6766 videos of 51 action
categories. Each video has an individual performing one of 51
actions. It is divided into human & object interaction, body
movements, facial actions categories. The dataset contains
actions with complex motion cues and is split into 70%
training and 30% testing for evaluation.

3) Something something v2 (SSV2): It is a large dataset
consisting of 174 fine-grained actions of human object inter-
actions [34]. The dataset has ∼220K videos of real-life daily
activities with the challenges like presence of diverse objects,
view-point variations, occlusion, etc.

B. Analysis of the proposed approach

Table I presents the effect of constructing graphs using STIP
features. It is shown that simple multi-layer perceptron trained
on STIP descriptors such as HoG and HoF gives 65.4% on
UCF-101 and 56.7% on HMDB-51 datasets. Whereas, average
pooling of extracted deep features increased the performance
by ∼5% due to learning of complex information about ac-
tions inherently. However, such simple aggregation of features
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Fig. 6: A graph classification network consisting of a series of graph convolution and pooling layers with readout layer at the
end.

TABLE I: Analysis of the proposed approach

Methods UCF-101 HMDB-51 SSV2
STIP descriptors 65.4 56.7 50.1

Deep features + Avg pooling 77.4 60.5 61.4
STIP descriptors + 1-layer GCN 93.7 72.6 57.9

Deep features + 1-layer GCN 95.4 81.7 67.2
STIP descriptors + 2-layer GCN 95.3 78.9 59.7

Deep features + 2-layer GCN 98.1 85.3 68.2
STIP descriptors + 3-layer GCN 94.9 77.6 58.4

Deep features + 3-layer GCN 97.7 84.6 67.9

cannot model the interactions among the entities present in a
video. Hence, to incorporate the reasoning between various
entities in a video, GCNs are employed to classify actions
which are depicted in the form of graph. It can be seen
from the Table I that the incorporation of GCN improves the
performance on all the datasets. Also, as the number of GCN
layers increases, the performance also improves. However, we
can observe that there is no significant improvement with more
than 2 layers. Fig. 7 shows the optimum number of interest

(a) UCF-101 (b) HMDB-51

Fig. 7: Plot of accuracy vs number of interest points detected

points to be detected from each video in order to obtain better
accuracy. It can be seen that the performance of our method
increases with the number of interest points detected (up to

1000). That is, a 1000 node graph best represents the action
occurring in a video. Rather than selecting the nodes randomly,
we choose the nodes based on score given by a SVM classifier
trained using the STIP descriptors. The illustration of graphs
generated for a few actions from UCF-101, HMDB-51, and
SSV2 datasets are presented in Fig. 8. The graphs effectively
depict the significant interaction among the detected while
eliminating the irrelevant background noise. That is, ‘hand
to eye’ interaction in ApplyEyeMakeup action, the ‘spinning
motion’ of an individual during diving action, and ‘movement
of an object’ in moving object from left to right action.

TABLE II: Comparison of the proposed approach with the
state-of-the-arts on UCF-101, HMDB-51, and SSV2 datasets

Methods UCF-101 HMDB-51 SSV2
C3D + IDT [35] 90.4 - -

Two-stream fusion [36] 92.5 65.4 -
R(2+1)D - RGB [37] 96.8 74.5 -

I3D - RGB [38] 98 80.7 -
P3D [41] 88.6 - -
TSN [6] 94.2 69.4 -

TSM [39] 94.5 70.7 63.4
STG [7] - - 46.1

Slowfast [46] - - 61.7
STM [40] 96.2 72.2 64.2

R(2+1)D + BERT [47] - 84.77 -
STC [45] 93.7 66.8 -

MViT [44] - - 67.1
ViViT [43] - - 65.4

Proposed approach
(STIP features) 95.3 78.9 59.7

Proposed approach
(Deep features) 98.1 85.3 68.2
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Fig. 8: 3D Illustration of generated graphs for (a) ApplyEyeMakeup from UCF-101 dataset, (b) Diving from HMDB-51 dataset,
and (c) Moving object from left to right from SSV2 dataset.

C. Comparison with existing approaches

Table II gives comparison of the proposed method with
existing state-of-the-art approaches on UCF-101, HMDB-51,
and SSV2 datasets. Conventional two-stream network [36]
explored various ways to fuse the appearance and motion
cues from independent streams without loss of information and
achieved 92.5% on UCF-101 and 65.4% on HMDB-51 dataset.
In order to capture the spatial and temporal information
simultaneously, several 3D-CNN architectures [37], [41], [46]
pre-trained on large datasets have been investigated. Among
these, I3D network pre-trained on Kinetics-400 has shown
the prominent performance in action recognition. Later, some
methods [39], [41] are introduced to reduce the computational
complexity of 3D-CNN architectures without compromising
its performance. Inspired by the success of transformers in
NLP tasks, some of the methods [43], [44], [47] incorporated
variants of transformers to attend to spatial and temporal infor-
mation. However, the above mentioned approaches are limited
in differentiating actions involving human object interactions.
It can be seen from the Table II that our proposed method
performs on par with the existing approaches. It achieves
98.1% on UCF-101, 85.3% on HMDB-51, and 68.2% on
SSV2 datasets. This is due to modeling of relationships among
the entities by the GCNs from the graphs constructed based
on the STIP feature descriptors.

V. CONCLUSION

In this paper, we propose a graph-based approach to model
the interactions between human and objects occurring in
an action. The graphs are constructed to provide the local

relationships and long-range temporal dependencies among the
entities present in a video. These entities are represented by
space-time interest points (STIP) where there is significant
local variations in appearance and motion. These entities
are connected based on appearance, motion, and position
using a novel membership function. The graphs are classified
using graph convolutional networks (GCNs) to effectively
aggregate the node information for recognition of actions. We
demonstrate the effectiveness of the proposed approach by
evaluating on UCF-101, HMDB-51, and something-something
v2 datasets. The experiments show that our approach performs
on par with existing state-of-the-arts due to efficient modelling
of reasoning between human and objects by the generated
graphs.
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son Tacon, André De Souza Brito, Hugo De Lima Chaves, and Marcelo
Bernardes Vieira. ”Multi-stream convolutional neural networks for ac-
tion recognition in video sequences based on adaptive visual rhythms.”
In 2018 17th IEEE International Conference on Machine Learning and
Applications (ICMLA), pp. 473-480. IEEE, 2018.

[17] Ullah, A., Ahmad, J., Muhammad, K., Sajjad, M. and Baik, S.W., 2017.
Action recognition in video sequences using deep bi-directional LSTM
with CNN features. IEEE access, 6, pp.1155-1166.

[18] Zong, Ming, Ruili Wang, Zhe Chen, Maoli Wang, Xun Wang, and Johan
Potgieter. ”Multi-cue based 3D residual network for action recognition.”
Neural Computing and Applications 33, no. 10 (2021): 5167-5181.

[19] Li, Xinyu, Bing Shuai, and Joseph Tighe. ”Directional temporal mod-
eling for action recognition.” In European Conference on Computer
Vision, pp. 275-291. Springer, Cham, 2020.

[20] Yang, Hao, Chunfeng Yuan, Bing Li, Yang Du, Junliang Xing, Weiming
Hu, and Stephen J. Maybank. ”Asymmetric 3d convolutional neural
networks for action recognition.” Pattern Recognition 85 (2019): 1-12.

[21] Zhang, Ziqi, Yaya Shi, Chunfeng Yuan, Bing Li, Peijin Wang, Weim-
ing Hu, and Zheng-Jun Zha. ”Object relational graph with teacher-
recommended learning for video captioning.” In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp.
13278-13288. 2020.

[22] Jiang, Bo, Xixi Wang, and Bin Luo. ”PH-GCN: Person re-identification
with part-based hierarchical graph convolutional network.” arXiv
preprint arXiv:1907.08822 (2019).

[23] Peng, Wei, Jingang Shi, Tuomas Varanka, and Guoying Zhao. ”Re-
thinking the ST-GCNs for 3D skeleton-based human action recognition.”
Neurocomputing 454 (2021): 45-53.

[24] Huang, Zhen, Xu Shen, Xinmei Tian, Houqiang Li, Jianqiang Huang,
and Xian-Sheng Hua. ”Spatio-temporal inception graph convolutional
networks for skeleton-based action recognition.” ACM International
Conference on Multimedia, pp. 2122-2130, 2020.

[25] Huang, Qingqing, Fengyu Zhou, Jiakai He, Yang Zhao, and Runze Qin.
”Spatial–temporal graph attention networks for skeleton-based action
recognition.” Journal of Electronic Imaging 29, no. 5 (2020): 053003.

[26] Zhu, Guangming, Liang Zhang, Hongsheng Li, Peiyi Shen, Syed Afaq
Ali Shah, and Mohammed Bennamoun. ”Topology-learnable graph
convolution for skeleton-based action recognition.” Pattern Recognition
Letters 135 (2020): 286-292.

[27] Cheng, Ke, Yifan Zhang, Xiangyu He, Weihan Chen, Jian Cheng,
and Hanqing Lu. ”Skeleton-based action recognition with shift graph
convolutional network.” In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 183-192. 2020.

[28] Duta, Iulia, Andrei Nicolicioiu, and Marius Leordeanu. ”Discovering
Dynamic Salient Regions with Spatio-Temporal Graph Neural Net-
works.” arXiv preprint arXiv:2009.08427 (2020).

[29] Ji, Jingwei, Ranjay Krishna, Li Fei-Fei, and Juan Carlos Niebles.
”Action genome: Actions as compositions of spatio-temporal scene
graphs.” In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10236-10247. 2020.

[30] Wu, Yuxin, and Kaiming He. ”Group normalization.” In Proceedings of
the European Conference on Computer Vision (ECCV), pp. 3-19. 2018.

[31] Kolesnikov, Alexander, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver,
Jessica Yung, Sylvain Gelly, and Neil Houlsby. ”Big transfer (bit):
General visual representation learning.” In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part V 16, pp. 491-507. Springer International Publishing,
2020.

[32] Soomro, Khurram, Amir Roshan Zamir, and Mubarak Shah. ”UCF101:
A dataset of 101 human actions classes from videos in the wild.” arXiv
preprint arXiv:1212.0402 (2012).

[33] Kuehne, Hildegard, Hueihan Jhuang, Estı́baliz Garrote, Tomaso Poggio,
and Thomas Serre. ”HMDB: a large video database for human motion
recognition.” In 2011 International Conference on Computer Vision, pp.
2556-2563. IEEE, 2011.

[34] Goyal, Raghav, Samira Ebrahimi Kahou, Vincent Michalski, Joanna
Materzynska, Susanne Westphal, Heuna Kim, Valentin Haenel et al.
”The” something something” video database for learning and evalu-
ating visual common sense.” In Proceedings of the IEEE International
Conference on Computer Vision, pp. 5842-5850. 2017.

[35] Tran, Du, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and
Manohar Paluri. ”Learning spatiotemporal features with 3d convolu-
tional networks.” In Proceedings of the IEEE International Conference
on Computer Vision, pp. 4489-4497. 2015.

[36] Feichtenhofer, Christoph, Axel Pinz, and Andrew Zisserman. ”Convo-
lutional two-stream network fusion for video action recognition.” In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1933-1941. 2016.

[37] Tran, Du, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and
Manohar Paluri. ”A closer look at spatiotemporal convolutions for action
recognition.” In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6450-6459. 2018.

[38] Carreira, Joao, and Andrew Zisserman. ”Quo vadis, action recognition?
a new model and the kinetics dataset.” In proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 6299-
6308. 2017.

[39] Ji Lin, Chuang Gan, and Song Han. Temporal shift module for efficient
video understanding. arXiv preprint arXiv:1811.08383, 2018

[40] Jiang, Boyuan, MengMeng Wang, Weihao Gan, Wei Wu, and Junjie Yan.
”Stm: Spatiotemporal and motion encoding for action recognition.” In
Proceedings of the International Conference on Computer Vision, pp.
2000-2009. 2019.

[41] Qiu, Zhaofan, Ting Yao, and Tao Mei. ”Learning spatio-temporal
representation with pseudo-3d residual networks.” In proceedings of
the IEEE International Conference on Computer Vision, pp. 5533-5541.
2017.

[42] Lin, Ji, Chuang Gan, and Song Han. ”Tsm: Temporal shift module
for efficient video understanding.” In Proceedings of the International
Conference on Computer Vision, pp. 7083-7093. 2019.

[43] Arnab, Anurag, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario
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