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Abstract—Transparent conducting oxides (TCOs) are emerg-
ing as possible alternative constituent materials to replace noble
metals such as silver and gold for low-loss plasmonic and meta-
material (MM) applications in the near infrared regime (NIR).
The optical characteristics of TCOs have been studied to evalu-
ate the functionalities and potential of these materials as metal
substitutes in plasmonic and MM devices, even apart from their
usual use as electrode materials. However, patterning TCOs at the
nanoscale, which is necessary for plasmonic and MM devices, is not
well studied. This paper investigates nanopatterning processes for
TCOs, especially the liftoff technique with electron-beam lithogra-
phy, and the realization of plasmonic nanostructures with TCOs.
By employing the developed nanopatterning process, we fabricate
2-D-periodic arrays of TCO nanodisks and characterize the mate-
rial’s plasmonic properties to evaluate the performance of TCOs as
metal substitutes. Light-induced collective oscillations of the free
electrons in the TCOs (bulk plasmons) and localized surface plas-
mon resonances are observed in the wavelength range from 1.6 to
2.1 pm. Well-defined resonance peaks are observed, which can be
dramatically tuned by varying the amount of dopant and by ther-
mally annealing the TCO nanodisks in nitrogen gas ambient while
maintaining the low-loss properties.

Index Terms—Nanopatterning, plasmonics, transparent con-
ductive oxides (TCOs).

1. INTRODUCTION

OR plasmonic systems [1], [2], noble metals traditionally

have been used as metallic components due to their ability
to support collective oscillations of free electrons (plasmons)
at optical frequencies. However, the performance of plasmonic
devices has been severely limited by the large optical losses
in noble metals in the near infrared regime (NIR) [3], [4]. Re-
cently, many studies have been conducted to characterize the op-
tical properties of various alternative plasmonic materials such
as metal alloys [5]-[7], transition-metal nitrides [8]-[10], and
heavily doped semiconductors [3], [11]-[14] in order to find
materials that could outperform noble metals for plasmonic and
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metamaterial (MM) applications. Such low-loss plasmonic ma-
terials would aid in overcoming the limitations of practical ap-
plications for plasmonic and MM systems. Recent studies have
demonstrated that transparent conducting oxides (TCOs) such
as Al- and Ga-doped zinc oxide (AZO, GZO) and tin-doped
indium oxide (ITO) are good candidates as plasmonic materi-
als in the near infrared frequency range because they exhibit
metallic behavior and have smaller material loss compared to
those of silver and gold in the NIR [8], [11], [13]. In our pre-
vious work [3], [15], we performed detailed comparative study
of different materials including TCOs for various plasmonic
and metamaterial applications and established that TCOs could
potentially outperform metals in certain MM devices. So far,
there are a few demonstrations where TCOs have been used
as plasmonic materials, such as in semiconductor plasmonic
quantum dots [16]-[18], plasmonic modulators [19], and nega-
tive refraction in AZO/ZnO MMs [20]. In these demonstrations,
TCO-based devices showed better performance compared to no-
ble metal-based devices in terms of lower losses and tunability.
In addition, there are many other applications such as epsilon-
near-zero devices [15], [21], [22], plasmonic metasurfaces such
as polarization-sensitive surfaces [23], [24], and plasmonic gas
sensors [15], [25], [26], where TCOs can be better alternatives
to noble metals. Here, we report on the tunable plasmonic res-
onances in a metasurface formed by TCO nanodisks.

TCOs have long been used in display technologies as elec-
trode materials [27], [28] because of their transparency in the
visible range and low electrical resistance. As plasmonic com-
ponents, TCOs exhibit lower optical loss with small magnitudes
of real permittivity compared to those parameters exhibited by
noble metals. TCOs additionally offer great modulation and
switching possibilities that can new generation of tunable plas-
monic and MM devices. To exhibit plasmonic properties, TCOs
must have a carrier concentration higher than 10?° cm~3, which
leads metal-like behavior in the NIR. Note that if the carrier
concentration in the host semiconductor of the TCO does not
reach this level, the material will function as a dielectric in the
NIR. By careful control and optimization of the fabrication con-
ditions such as dopant type, doping concentration, deposition
temperature, and deposition pressure, one can fabricate TCOs
that exhibit the critical optical properties suitable for plasmonic
applications in the NIR. Our recent studies showed that while
being plasmonic, TCOs can have losses four times smaller than
that of silver in the NIR [3]. Those two factors (low loss and plas-
monic properties) open new routes to designing and realizing
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Fig. 1. Schematic view of a biperiodic array of TCO nanodisks and the defi-
nition of the relevant parameters.

plasmonic and optical MM devices with high performance at
the technologically important near infrared wavelengths region
including the telecommunication window around 1.55 pm.

The next important step along the path to replacing conven-
tional metals with new materials is to develop the necessary
nanopatterning techniques to make the new materials into de-
signs and devices. This is a critical step because most plasmonic
and MM devices are based on building blocks of nanostruc-
tured metals and dielectrics [29]-[31]. In our studies, we use a
liftoff process with electron-beam lithography (EBL), a com-
monly used method to pattern nanoscale devices, to produce
2-D-periodic arrays of TCO nanodisks. The plasmonic prop-
erties of the TCO nanodisks are analyzed for a disk diameter
range of 250-900 nm and for a constant disk height of 270 nm.
We observe localized surface plasmon resonances (LSPRs) in
the TCO nanodisk array at NIR frequencies, and we find that
the LSPR wavelength and full-width at half-maximum of the
resonance are remarkably sensitive both to the dimensions of
the nanodisks and the doping density as well as to a subsequent
thermal annealing treatment.

This paper is organized as follows. In Section II, we de-
scribe the procedure of the liftoff process and the restrictions on
the deposition conditions set by the liftoff process. The optical
properties of TCOs are strongly dependent on the deposition
conditions, and thus, optimization is necessary to achieve the
TCO properties required for plasmonic operation in the desired
wavelength range. The TCO thin films are characterized with
spectroscopic ellipsometry to retrieve their dielectric functions.
Prism coupling experiments are performed to study the surface
plasmon polariton (SPP) characteristics of the TCOs. In Sec-
tion III, we analyze the plasmonic properties of the arrays of
TCO nanodisks and demonstrate that the LSPR absorption of
GZO0 nanodisks can be dynamically tuned across the NIR spec-
trum while maintaining the low-loss properties of the TCO by
applying a thermal annealing treatment.

II. FABRICATION AND CHARACTERIZATION
A. Liftoff Process

To fabricate a 2-D array of TCO nanodisks as depicted
schematically in Fig. 1, a silicon substrate was first spin-coated
with a 1-pm-thick layer of positive electron-beam resist (ZEP
520 A) at 1000 r/min followed by the sample prebake at 180 °C
for 2 min. The nanoscale pattern of cylindrical nanodisks was
then exposed by EBL (Vistec VB6). The beam energy was
100 kV and the beam current was 1.012 nA. The base dose

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 19, NO. 3, MAY/JUNE 2013

was maintained at 320 ©C/cm?. The exposed sample was de-
veloped in ZED-N50 (n-amyl acetate) for 1 min, and dipped in
isopropyl alcohol for 30 s to rinse ZED-N50, and then dried in
gaseous nitrogen. Prior to film deposition, a postbake was per-
formed at 200 °C for 30 s. We deposited TCO films by pulsed
laser deposition (PVD Products, Inc.) using a KrF excimer laser
(Lambda Physik GmbH) operating at a wavelength of 248 nm
for source material ablation.

The GZO, AZO, and ITO targets were purchased from the
Kurt J. Lesker Corp. with purities of 99.99% or higher. The
energy density of the laser beam at the target surface was main-
tained at 1.5 J/cm? [8]. A high oxygen partial pressure can etch
the e-beam resist during the deposition process due to reac-
tion with oxygen gas [32]. Thus, all the films were grown with
an oxygen partial pressure of 0.2 mTorr (0.027 Pa) or lower.
Since e-beam resist can become hard-baked from elevated sub-
strate temperatures during a deposition process, the deposition
temperature should be maintained as low as possible in order
to facilitate the subsequent liftoff process. In our studies, the
substrate temperature during TCO thin film deposition was op-
timized at 70 °C.

For the liftoff process, the sample deposited with a TCO film
was dipped in ZDMAC (dimethylacetamide) for 10 min and
sonicated for 1 min. Most of the e-beam resist was removed
during this process, but small amounts of resist remained on
the edges and sides of the nanostructures. In order to remove
the residual e-beam resist, the sample was dipped in PRS 2000
stripper at 70 °C for 30 min and then dipped in acetone for 5 min
for rinsing.

B. Ellipsometric Characterization

The optical properties of the TCO films were characterized
by spectroscopic ellipsometry (V-VASE, J. A. Woollam) in the
spectral region from 350 to 2000 nm. The dielectric function
of the film was retrieved by fitting a Drude—Lorentz oscillator
model to the ellipsometry data. In semiconductors, conduction
electrons have a nearly continuum of available states, so that
their interaction with an electromagnetic field is well approxi-
mated by Drude theory, where conduction electrons are treated
as a 3-D free-electron gas. The Lorentz oscillator model is used
to describe the absorption of photons by valence electrons. An
electron in valence band jumps to conduction band by absorbing
a photon, resulting in optical loss [3]. The following equation
describes the Drude—Lorentz oscillator model, where the second
term comes from the Drude model and the third term represents
the Lorentz oscillator. The retrieved model parameters are listed
in Table I:

2
Wy flw%

ww+il,)  w? —w? —iwl

e(w) =0 — (1)
where €, is the background permittivity, w), is the unscreened
plasma frequency, I, is the carrier relaxation rate, and f; is the
strength of the Lorentz oscillator with center frequency w; and
damping I';.

Fig. 2 shows the optical properties of AZO, GZO, and
ITO films deposited under conditions optimized for the liftoff



KIM et al.: PLASMONIC RESONANCES IN NANOSTRUCTURED TRANSPARENT CONDUCTING OXIDE FILMS

TABLE 1
DRUDE-LORENTZ MODEL PARAMETERS FOR TCOS
AZO (2wt%) GZO (6Wt%) ITO (10wt%)
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Fig. 2. Comparison of the optical properties of TCO films deposited under
optimized conditions for the liftoff process. (a) Real part of the spectral dielectric
function. (b) Imaginary part of the spectral dielectric function.

process. Notably, the crossover wavelengths of all the TCO
films are below telecommunication wavelength of 1.55 pm.
Compared to our previous study [8], the optical properties of
these TCO films are improved in terms of their metallic behav-
ior and optical losses. The AZO film offers the lowest optical
loss, referring to the imaginary part of its permittivity. Note that
GZO can provide a crossover wavelength as low as 1.2 um,
but the optical loss in GZO is higher than that in AZO. Under
conditions optimized for the liftoff process, the ITO film has the
highest loss and the largest crossover wavelength compared to
AZO and GZO.

4601907

(a) (b) 4o,
S0
Air — SPP
I 3 40
=
=
D 30
L
=
L]
BK7 Prism &2 20
10
0 30 3s 40 45 50 55 60
Incident Angle(deg.)
©) 60
—1TO
50 —AZO
——GZ0
8 40
=
s
o 30
=)
s =
o 20
10
% 30 70

40 50 60
Incident Angle(deg.)

Fig. 3. (a) Schematic view of the experimental setup for SPP excitation in
attenuated total reflection. (b) Reflectance curve versus incident angle of light
with 1.55-pm wavelength for ITO, AZO, and GZO. (c) Simulation of reflectance
curve versus incident angle of light with 1.55-pm wavelength for ITO, AZO,
and GZO.

C. Prism Coupling for SPP Measurements

SPPs are propagating charge-density waves on metal—
dielectric interface that can be excited by attenuated total re-
flection of an incident electromagnetic wave [33]. In this study,
SPP excitation on TCO films was used to verify the applicability
of these materials for NIR plasmonic devices, especially at the
telecommunication wavelength of 1.55 ym. We used a prism
coupler (Metricon 2010/M) and implemented a Kretschmann—
Raether configuration for SPP coupling (see Fig. 3). The TCO
thin films were directly deposited on BK7 glass coupling prisms
(n = 1.501), and the thicknesses of AZO, GZO, and ITO were
154, 147, and 139 nm, respectively.

Avsp beam of TM-polarized, monochromatic laser at a wave-
length of 1.55 pum was used to illuminate the sample through
the input facet of the 45° BK7 glass coupling prism. While ro-
tating the sample with respect to the laser beam, the far-field
reflectance was measured with a detector. This provided a mea-
surement of the reflected intensity for a range of internal angles
from 30° to 62°. Theoretically, SPPs at a TCO-air interface are
expected in wavelength region where the real part of the TCO
permittivity (€7 ) is less than —1.

The experimental observation of broad SPP resonances in
ITO films was previously reported in [34], [35]. Those reports
demonstrated a thickness-dependent SPP on ITO thin films.
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(a) 54° tilted SEM image of an array of GZO nanodisks with a mean diameter D = 500 nm and height 4 = 270 nm. (Inset) SEM image of GZO nanodisks

at high magnification. (b) Top-down view of the nanodisks showing nearly circular shapes. (c) AFM scan of the GZO nanodisks.

AZO was previously reported to be incapable of supporting
SPPs at 1.55 um because of its smaller plasma frequency. How-
ever, the AZO films in this and our previous work [8] are op-
timized for large plasma frequencies at 1.55 pm. The experi-
mental data from the prism coupling reflectance measurements
clearly show the SPP existence on AZO films at a wavelength of
1.55 pum [see Fig. 3(b)]. The reflectance measurements from the
prism coupler were verified using analytic calculations. Fig. 3(c)
shows the calculated reflectance values for AZO, GZO, and ITO
thin films. The dip in reflectance occurring around 50-60° cor-
responds to the excitation of SPPs on these films.

III. ARRAYS OF NANODISKS

A. Structural Characterization

Plasmonic structures such as nanodisks of noble metals have
been studied extensively [36], [37] since their strong resonant
interaction with light is useful in many applications such as sen-
sors. In this paper, a polarization-independent design consisting
of a periodic 2-D array of nanodisks is used to study the plas-
monic properties of TCO nanostructures and to compare those
properties to previous studies with noble metals. As shown in
Fig. 4, we fabricated a square array of 270-nm-thick GZO nan-
odisks with a spacing of 100 nm between adjacent nanodisks.
The nanodisk diameter was varied from 250 to 900 nm over
a number of samples. In order to make the LSPR structures
covering much of the NIR spectrum (including the telecom-
munications wavelengths), we fabricated the nanodisk array
with GZO because it has higher plasma frequency compared
to other TCOs. The scanning electron microscope (SEM) image

in Fig. 4(a) shows the uniformity of the nanopatterned arrays
in a relatively large area of nanoscale devices. The shape of
nanodisk is almost perfectly circular shown in Fig. 4(b). It is
important to note that the deposition of the GZO layer on a
patterned e-beam resist and its subsequent liftoff produces non-

vertical side walls. As a result, the cross section of the nanodisk
represents a trapezoidal shape [see the inset of Fig. 4(a)]. For
morphological analysis, we scanned the sample with an atomic
force microscope (Veeco Dimension 3100 AFM) to check the
roughness of the nanodisk top surface. We used standard Si
probe tips with the atomic force microscopy (AFM) in tapping
mode. The resolutions of our AFM scans were not sufficient to
accurately investigate the full depths of the narrow gaps between
nanodisks. Hence, it is difficult to see the cross-sectional dimen-
sion of the nanodisks from the AFM image shown in Fig. 4(c).
The root-mean-squared (RMS) roughness of the tops of the pat-
terned nanodisks was about 6—8 nm. For as-deposited GZO thin
films without any patterning processing, the RMS roughness is
5-7 nm. We can, therefore, confirm that the liftoff process does

not significantly affect the surface morphology of the developed
TCO material.

B. Optical Characterization

The transmission spectra of the nanodisk arrays are obtained
using a V-VASE spectroscopic ellipsometer with a normally
incident TE wave. The measurement is performed in the wave-
lengthrange from 1.1 to 2.4 m (see Fig. 5). Note that absorption
below 1.2 um corresponds to phonon-assisted interband opti-
cal absorption in the silicon substrate. The LSPR wavelength
and intensity depend on the size, shape, and properties of the
nanostructured array [38]-[40].

In our studies, we investigate the effects of disk size and dop-
ing density on the LSPR properties. The transmission spectra
reveal well-defined LSPR peaks, and the positions of these peaks
depend on both the disk size and the doping density. As the disk
diameter increases (see Fig. 5), the resonance red shifts and be-
comes stronger. However, the transmission peak broadens as the
disk diameter increases. This is due to the fact that the disks be-
gin to support higher order plasmonic modes that start to overlap
as the disk size increases [41], [42]. The experimental trends are
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diameter of 500 nm) with different doping ratios in the GZO material. (b)
Simulation results of transmittance spectra for GZO nanodisk arrays using
different dielectric functions for films with different doping concentrations.

verified by simulations with finite-element-method-based com-
mercial software, Comsol Multiphysics. Trapezoidal nanodisk
structures are used with the optical properties obtained from thin
films co-deposited with the nanostructures. Fig. 6(b) shows the
simulation results for the GZO nanodisks with varying doping
densities. Although some minor mismatch due to fabrication
imperfections exists, numerical results are in good agreement
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with the experiments. In our previous study [8], we reported
the change of plasma frequency and optical loss depending on
doping density. As the doping density of GZO increases [see
Fig. 6(a)], the films exhibit higher plasma frequency, and hence,
the resonance shifts to shorter wavelengths. The optical loss of
GZO is increased as reducing the doping density. The broad-
ening of resonance peak corresponds to the increase of optical
loss. In terms of the tunability of the LSPR wavelength, the peak
shift arising from the change in doping density is much stronger
than that caused by the nanodisk geometry.

C. Thermal Annealing

Thermal treatments on TCO films have been well studied
in transparent electrode research in order to enhance the crys-
tallinity and hence, the transparency of TCO films [43]-[45].
The effect of thermal annealing on a TCO film is strongly de-
pendent on the temperature and the type of ambient gas. In
order to characterize the effect of thermal annealing on plas-
monic properties, we first investigated the annealing effect on
the optical properties of TCOs with respect to two aspects: car-
rier concentration and optical loss. The GZO nanodisk sample
was annealed up to 350 °C for an hour in nitrogen ambient to
observe the effect of the annealing gas on the optical loss.

The resulting transmittance spectra in Fig. 7(a) show that the
thermal treatment can dramatically tune the LSPR peak to longer
wavelengths due to reductions in the carrier concentration. Post-
deposition anneal offers a way to control the LSPR properties
through a postfabrication treatment without any changes in op-
tical loss of TCOs. This allows for flexibility in the design and
optimization of the LSPR nanostructure. In Fig. 7(b), we plot
the Drude damping coefficient and crossover frequency w, as
functions of the annealing temperature with either a nitrogen or
oxygen ambient. The Drude damping coefficient is indicative
of the optical losses occurring in the material, and the crossover
frequency w, is defined as the frequency at which the real part
of permittivity of the material crosses zero. Since w, is directly
proportional to the plasma frequency w),, and w), is proportional
to the square of the carrier concentration, the plot in Fig. 7(b)
in essence shows the carrier concentration trend with respect to
the annealing temperature.

We see in the figure that the carrier concentration decreases
with increasing annealing temperature for both types of ambient
gas. The optical loss strongly increases after annealing in oxygen
ambient, while the optical loss remains the same after annealing
in the nitrogen ambient.

The morphological and structural modifications incurred by
the annealing treatment have already been examined in the case
of noble metals [36], [46]. In those studies, the goal was to
improve quality of the LSPR properties through an annealing
treatment. We carry out similar studies on TCOs in this paper.
The SEM image in Fig. 7(c) shows that there are no substantial
changes in the nanodisk shape or morphology for annealing
temperatures up to 350 °C. Given that TCOs are ceramics, we
would expect this trend to continue for higher temperatures
as well. In contrast, noble metal nanostructures are known to
deform when annealed at such temperatures.
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Fig. 7. (a) Transmittance spectra for GZO nanodisk arrays with different
thermal annealing temperatures in a nitrogen ambient. (b) Drude damping co-
efficient and crossover frequency w, versus annealing temperature in either
oxygen or nitrogen ambient gas. (¢) SEM image of nanodisk before and after
thermal treatment.

IV. CONCLUSION

In conclusion, TCOs are good alternatives to noble metals
for plasmonic applications in the NIR. We observed that thin
films of AZO, GZO, and ITO can support SPPs at telecommu-
nication wavelengths. We showed that standard nanofabrication
techniques may be used to pattern these TCO films. When pat-
terned, these materials exhibit LSPR properties similar to gold
and silver nanostructures. The resonance properties strongly de-
pend on the properties of the film such as carrier concentration.
Thermal annealing in different gases altered the resonance by
changing the carrier concentration in these films. At the same
time, in contrast to noble metals, no significant changes in mor-
phology, surface roughness, and grain structure were observed
in GZO nanodisks after annealing. The effect of the carrier con-
centration via annealing can be used for postfabrication tuning
of the properties of TCO devices. Such tunability of the TCO
properties could be used to tailor the optical resonance for var-
ious plasmonic applications and enable a new generation of
controllable, switchable devices.
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