
Practical Multi-threaded Graph Coloring Algorithms for
Shared Memory Architecture

Nandini Singhal Sathya Peri Subrahmanyam Kalyanasundaram

Department of Computer Science & Engineering

Indian Institute of Technology Hyderabad

ICDCN AADDA 2017



Outline of the Presentation

1 Brief Introduction

2 Related Work

3 Proposed Methodology

4 Simulation Results

5 Conclusion & Future Work



Outline of the Presentation

1 Brief Introduction

2 Related Work

3 Proposed Methodology

4 Simulation Results

5 Conclusion & Future Work



Brief Introduction

How do you parallelise an algorithm?

Decomposing an Algorithm into independent tasks

Distributing the parts as tasks which are worked on by multiple
processes simultaneously

Coordinating work and communications of those processes i.e. called
as Synchronization

Here, synchronization is being achieved on Shared Memory Model

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 4/33



Brief Introduction

How do you parallelise an algorithm?

Decomposing an Algorithm into independent tasks

Distributing the parts as tasks which are worked on by multiple
processes simultaneously

Coordinating work and communications of those processes i.e. called
as Synchronization

Here, synchronization is being achieved on Shared Memory Model

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 4/33



Brief Introduction

Parallelising Graph Coloring Algorithm

Problem Statement

Given a simple graph G = (V,E).

Assign colors to the vertices of the graph such that no two adjacent
vertices are assigned the same color.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 5/33



Outline

1 Brief Introduction

2 Related Work

3 Proposed Methodology

4 Simulation Results

5 Conclusion & Future Work



Related Work

Algorithm 1 - Jones Plassman Algorithm [SIAM1993]

Input: G = (V,E)

Assign a random priority to each vertex given by ρ(v)

For each vertex v,
1 vertices with priority less than it are its predecessors
2 vertices with priority greater than it would be its successors

Each vertex maintains a count for all its neighbours which are its
predecessors

A vertex gets colored when its count equals 0

When a vertex gets colored, it informs all its successors which are its
neighbours to decrease their count by 1.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 7/33



Related Work

Algorithm 1 - Jones Plassman Algorithm [SIAM1993]

Input: G = (V,E)

Assign a random priority to each vertex given by ρ(v)

For each vertex v,
1 vertices with priority less than it are its predecessors
2 vertices with priority greater than it would be its successors

Each vertex maintains a count for all its neighbours which are its
predecessors

A vertex gets colored when its count equals 0

When a vertex gets colored, it informs all its successors which are its
neighbours to decrease their count by 1.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 7/33



Related Work

Algorithm 1 - Jones Plassman Algorithm [SIAM1993]

Input: G = (V,E)

Assign a random priority to each vertex given by ρ(v)

For each vertex v,
1 vertices with priority less than it are its predecessors
2 vertices with priority greater than it would be its successors

Each vertex maintains a count for all its neighbours which are its
predecessors

A vertex gets colored when its count equals 0

When a vertex gets colored, it informs all its successors which are its
neighbours to decrease their count by 1.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 7/33



Related Work

Algorithm 1 - Jones Plassman Algorithm [SIAM1993]

Input: G = (V,E)

Assign a random priority to each vertex given by ρ(v)

For each vertex v,
1 vertices with priority less than it are its predecessors
2 vertices with priority greater than it would be its successors

Each vertex maintains a count for all its neighbours which are its
predecessors

A vertex gets colored when its count equals 0

When a vertex gets colored, it informs all its successors which are its
neighbours to decrease their count by 1.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 7/33



Related Work

Algorithm 1 - Jones Plassman Algorithm [SIAM1993]

Input: G = (V,E)

Assign a random priority to each vertex given by ρ(v)

For each vertex v,
1 vertices with priority less than it are its predecessors
2 vertices with priority greater than it would be its successors

Each vertex maintains a count for all its neighbours which are its
predecessors

A vertex gets colored when its count equals 0

When a vertex gets colored, it informs all its successors which are its
neighbours to decrease their count by 1.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 7/33



Related Work

Algorithm 1 - Jones Plassman Algorithm [SIAM1993]

Input: G = (V,E)

Assign a random priority to each vertex given by ρ(v)

For each vertex v,
1 vertices with priority less than it are its predecessors
2 vertices with priority greater than it would be its successors

Each vertex maintains a count for all its neighbours which are its
predecessors

A vertex gets colored when its count equals 0

When a vertex gets colored, it informs all its successors which are its
neighbours to decrease their count by 1.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 7/33



Related Work

Algorithm 1 - Drawback of Jones Plassman

Uses random function for assigning the priorities

If the input graph is a chain of vertices and the numbering of vertices
correspond to their priorities, then there is no parallelism exhibited by
this algorithm

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 8/33



Related Work

Algorithm 1 - Drawback of Jones Plassman

Uses random function for assigning the priorities

If the input graph is a chain of vertices and the numbering of vertices
correspond to their priorities, then there is no parallelism exhibited by
this algorithm

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 8/33



Related Work

Algorithm 2 - Block Partitioning based Algorithm
[Gebremedhin2000]

Each thread is responsible for proper coloring of vertices in its
partition

1 Tentative coloring of vertices

Synchronization of all threads

Sequential coloring of conflicting vertices

Downside - not much parallelism exploited

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 9/33



Related Work

Algorithm 2 - Block Partitioning based Algorithm
[Gebremedhin2000]

Each thread is responsible for proper coloring of vertices in its
partition

1 Tentative coloring of vertices

Synchronization of all threads

Sequential coloring of conflicting vertices

Downside - not much parallelism exploited

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 9/33



Related Work

Algorithm 2 - Block Partitioning based Algorithm
[Gebremedhin2000]

Each thread is responsible for proper coloring of vertices in its
partition

1 Tentative coloring of vertices

Synchronization of all threads

Sequential coloring of conflicting vertices

Downside - not much parallelism exploited

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 9/33



Related Work

Algorithm 2 - Block Partitioning based Algorithm
[Gebremedhin2000]

Each thread is responsible for proper coloring of vertices in its
partition

1 Tentative coloring of vertices

Synchronization of all threads

Sequential coloring of conflicting vertices

Downside - not much parallelism exploited

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 9/33



Related Work

Algorithm 3 - Iterative Distributed Algorithm
[GebremedhinEuroPar2005]

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 10/33



Related Work

Algorithm 3 - Iterative Distributed Algorithm
[GebremedhinEuroPar2005]

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 10/33



Related Work

Algorithm 3 - Iterative Distributed Algorithm
[GebremedhinEuroPar2005]

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 10/33



Related Work

Algorithm 3 - Iterative Distributed Algorithm
[GebremedhinEuroPar2005]

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 10/33



Related Work

Algorithm 3 - Iterative Distributed Algorithm
[GebremedhinEuroPar2005]

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 10/33



Related Work

Algorithm 3 - Iterative Distributed Algorithm
[GebremedhinEuroPar2005]

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 10/33



Related Work

Algorithm 3 - Iterative Distributed Algorithm
[GebremedhinEuroPar2005]

For each thread,

Repeat until all the vertices in its partition are properly colored
1 Tentative coloring of vertices - Each vertex has local copy of colors

used by neighbours and it is assigned a color different from it. But still
can result in improper coloring across partitions

2 Synchronization of threads
3 Identifying conflicts and marking nodes in lower partition for recolor
4 Synchronization of threads

Downside - number of conflicts increase with increase in number of
partitions; random partitioning increases the number of cross edges

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 11/33



Related Work

Algorithm 3 - Iterative Distributed Algorithm
[GebremedhinEuroPar2005]

For each thread,

Repeat until all the vertices in its partition are properly colored
1 Tentative coloring of vertices - Each vertex has local copy of colors

used by neighbours and it is assigned a color different from it. But still
can result in improper coloring across partitions

2 Synchronization of threads
3 Identifying conflicts and marking nodes in lower partition for recolor
4 Synchronization of threads

Downside - number of conflicts increase with increase in number of
partitions; random partitioning increases the number of cross edges

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 11/33



Related Work

Algorithm 3 - Iterative Distributed Algorithm
[GebremedhinEuroPar2005]

For each thread,

Repeat until all the vertices in its partition are properly colored
1 Tentative coloring of vertices - Each vertex has local copy of colors

used by neighbours and it is assigned a color different from it. But still
can result in improper coloring across partitions

2 Synchronization of threads
3 Identifying conflicts and marking nodes in lower partition for recolor
4 Synchronization of threads

Downside - number of conflicts increase with increase in number of
partitions; random partitioning increases the number of cross edges

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 11/33



Related Work

Algorithm 3 - Iterative Distributed Algorithm
[GebremedhinEuroPar2005]

For each thread,

Repeat until all the vertices in its partition are properly colored
1 Tentative coloring of vertices - Each vertex has local copy of colors

used by neighbours and it is assigned a color different from it. But still
can result in improper coloring across partitions

2 Synchronization of threads
3 Identifying conflicts and marking nodes in lower partition for recolor
4 Synchronization of threads

Downside - number of conflicts increase with increase in number of
partitions; random partitioning increases the number of cross edges

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 11/33



Related Work

Algorithm 3 - Iterative Distributed Algorithm
[GebremedhinEuroPar2005]

For each thread,

Repeat until all the vertices in its partition are properly colored
1 Tentative coloring of vertices - Each vertex has local copy of colors

used by neighbours and it is assigned a color different from it. But still
can result in improper coloring across partitions

2 Synchronization of threads
3 Identifying conflicts and marking nodes in lower partition for recolor
4 Synchronization of threads

Downside - number of conflicts increase with increase in number of
partitions; random partitioning increases the number of cross edges

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 11/33



Related Work

Algorithm 4 - Improved Iterative Parallel Algorithm
[Gebremedhin2012]

Parallel implementation of the previous algorithm using OpenMP on
different architectures

Downside - overhead of thread creation in each iteration

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 12/33



Related Work

In our algorithms, we aim to limit the number of threads acting on a
partition of vertices.

We simulate the iterative parallel algorithm using barrier for
increasing number of threads as follows:

It is noted that with increasing number of threads, performance
declines

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 13/33



Related Work

Basic Layout of the Proposed Algorithms

Input: G = (V,E), p threads

Partition V into {V1, V2, . . . , Vp} uniformly at random

Vertices in each partition are classified as:-
1 Internal Vertices
2 Boundary Vertices

Each thread is responsible for proper coloring of vertices in its
partition

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 14/33



Outline

1 Brief Introduction

2 Related Work

3 Proposed Methodology

4 Simulation Results

5 Conclusion & Future Work



Proposed Methodology

Algorithm 1 - Using locks on vertices

Using 1 Coarse Grained Lock

For coloring any boundary vertex, a global lock must be acquired

Using Multiple Fine Grained Locks

1 Each boundary vertex has a corresponding lock

2 For coloring any boundary vertex, acquire respective locks on all
adjacent boundary vertices in increasing order of ids (to avoid races)

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 16/33



Proposed Methodology

Algorithm 1 - Using locks on vertices

Using 1 Coarse Grained Lock

For coloring any boundary vertex, a global lock must be acquired

Using Multiple Fine Grained Locks

1 Each boundary vertex has a corresponding lock

2 For coloring any boundary vertex, acquire respective locks on all
adjacent boundary vertices in increasing order of ids (to avoid races)

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 16/33



Proposed Methodology

Algorithm 1 - Drawback of using mutex locks

If two vertices v1 & v2 getting colored (from different partitions), are
adjacent to a vertex v3, then there is no need to lock v3 if it is not getting
colored.

Idea

A vertex to be colored acquires shared locks on neighbouring vertices;
exclusive lock on the vertex itself in the order of increasing vertex ids.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 17/33



Proposed Methodology

Algorithm 1 - Drawback of using mutex locks

If two vertices v1 & v2 getting colored (from different partitions), are
adjacent to a vertex v3, then there is no need to lock v3 if it is not getting
colored.

Idea

A vertex to be colored acquires shared locks on neighbouring vertices;
exclusive lock on the vertex itself in the order of increasing vertex ids.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 17/33



Proposed Methodology

Algorithm 2 - Reduced number of locks

Each partition has a corresponding lock and a array element indexed by
partition id
For coloring any boundary vertex v,

1 Acquire exclusive lock on the corresponding partition of v

2 Update v in the array index of the partition

3 Release exclusive lock on partition of v
4 for each partition in random order

1 Acquire shared lock on partition
2 Check if the vertex in that array index is neighbouring to v
3 If not, release shared lock

5 end-for

6 Assign v, a least color different from all its neighbouring vertices

7 Release all acquired shared locks

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 18/33



Proposed Methodology

Long transitive chains get created as below:

All threads are blocked! But alternating vertices could be colored still in
parallel!
⇒ Need to cut waiting chains

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 19/33



Proposed Methodology

Long transitive chains get created as below:

All threads are blocked! But alternating vertices could be colored still in
parallel!
⇒ Need to cut waiting chains

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 19/33



Proposed Methodology

Algorithm 3 - Scheduling requests [Anderson2015]

Maintain a table data structure of boolean fields with
number of rows = number of partitions + 1 and number of cols =
number of vertices

Each row corresponds to the requests being positioned there.

Each column corresponds to a vertex

When a vertex v is to be colored,
1 It starts looking row by row where its request can be placed.
2 Lock the head row
3 l1: Check all the cols entry corresponding to v’s neighbours in that row
4 If any entry is not false, lock next row and repeat
5 If the row where you can place your request is found, mark all

corresponding entries as true
6 Unlock the locked row
7 Wait for your row to get enabled.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 20/33



Proposed Methodology

The last thread to fulfill its request in a particular row, sets the next row’s
enabled to allow all the requests in the next row to get satisfied.

When a row gets enabled, all the requests placed in it get fulfilled.

Why number of rows = number of partition works? (wrap-around)

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 21/33



Proposed Methodology

Algorithm 4 - Using MIS

Instead of computing MIS in the original graph, we maintain a small
subgraph and in each iteration, identify the Maximal Independent sets of
vertices that can be colored in parallel.

Maximum number of vertices in graph = number of partitions

For coloring each boundary vertex,

1 Lock graph

2 add edges for all adjacent partitions

3 Unlock graph and wait for the vertex to become active

When a vertex gets colored and exits from the graph, it identifies the MIS
of vertices that can be colored in parallel and make them active.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 22/33



Outline

1 Brief Introduction

2 Related Work

3 Proposed Methodology

4 Simulation Results

5 Conclusion & Future Work



Simulation Results

Experimental Setup

24 core Intel Xeon X5675, each core with 6 h/w threads

Simulation using Pthreads

Dataset: Real-World graphs from SNAP

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 24/33



Simulation Results

Table: Results of Live Journal Dataset

#threads Time Taken in secs #Colors used

Fine Grained Locks 70 6.18 334

BTO algorithm 200 8.26 335

Anderson improved 2 13.48 335

Sequential algorithm 1 13.86 334

Coarse grained locks 100 17.75 333

static graph 2 17.11 335

MIS 2 18.36 336

Barrier synchronization 400 21.99 334

Jones Plassman 40 64954 334

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 25/33



Simulation Results

To be observed..

All these algorithms have been simulated by using First Fit Coloring
scheme.

When using other coloring schemes like Largest Degree First, etc.
1. time taken for all algorithms increase proportionately due to sorting of
vertices according to their degrees
2. number of colors used decreases.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 26/33



Outline

1 Brief Introduction

2 Related Work

3 Proposed Methodology

4 Simulation Results

5 Conclusion & Future Work



Conclusion & Future Work

Conclusion

In this presentation, we covered:

1 Existing parallel implementations of Graph Coloring

2 Presented new Graph Coloring Algorithm using locks

3 Described the evaluation results of the various algorithms on real
world graphs

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 28/33



Conclusion & Future Work

Future Work

1 Exploring ways of cutting waiting chain in fine grained locking

2 Think about pushing ahead of requests in Anderson’s table

3 Converting undirected graph to DAG to exploit the parallelism of
algorithms

4 Profile the code to see where performance lags

5 Extend these ideas for trees

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 29/33



Conclusion & Future Work

References I

Erik G. Boman, Doruk Bozdag, Ümit V. Çatalyürek, Assefaw Hadish Gebremedhin, and Fredrik Manne.

A scalable parallel graph coloring algorithm for distributed memory computers.
In Euro-Par 2005, Parallel Processing, 11th International Euro-Par Conference, Lisbon, Portugal, August 30 - September
2, 2005, Proceedings, pages 241–251, 2005.

Ümit V. Çatalyürek, John Feo, Assefaw Hadish Gebremedhin, Mahantesh Halappanavar, and Alex Pothen.

Graph coloring algorithms for multi-core and massively multithreaded architectures.
Parallel Computing, 38(10-11):576–594, 2012.

JR Allwright, R Bordawekar, PD Coddington, K Dincer, and CL Martin.

A comparison of parallel graph coloring algorithms.
Technical report, Citeseer, 1995.

William Hasenplaugh, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson.

Ordering heuristics for parallel graph coloring.
In 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’14, Prague, Czech Republic - June 23 -
25, 2014, pages 166–177, 2014.

Assefaw H Gebremedhin, Fredrik Manne, and Tom Woods.

Speeding up parallel graph coloring.
In Applied Parallel Computing. State of the Art in Scientific Computing, pages 1079–1088. Springer, 2006.

Md Mostofa Ali Patwary, Assefaw H Gebremedhin, and Alex Pothen.

New multithreaded ordering and coloring algorithms for multicore architectures.
In Euro-Par 2011 Parallel Processing, pages 250–262. Springer, 2011.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 30/33



Conclusion & Future Work

References II

Mark T. Jones and Paul E. Plassmann.

A parallel graph coloring heuristic.
SIAM J. Scientific Computing, 14(3):654–669, 1993.

Erik G Boman, Doruk Bozdağ, Umit Catalyurek, Assefaw H Gebremedhin, and Fredrik Manne.

A scalable parallel graph coloring algorithm for distributed memory computers.
In Euro-Par 2005 Parallel Processing, pages 241–251. Springer, 2005.

Jure Leskovec and Andrej Krevl.

SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

Assefaw Hadish Gebremedhin and Fredrik Manne.

Scalable parallel graph coloring algorithms.
Concurrency - Practice and Experience, 12(12):1131–1146, 2000.

Catherine E. Jarrett, Bryan C. Ward, and James H. Anderson.

A contention-sensitive fine-grained locking protocol for multiprocessor real-time systems.
In Proceedings of the 23rd International Conference on Real Time Networks and Systems, RTNS 2015, Lille, France,
November 4-6, 2015, pages 3–12, 2015.

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 31/33

http://snap.stanford.edu/data


Conclusion & Future Work

Thank You

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 32/33



Conclusion & Future Work

Questions ?

Practical Multi-threaded Graph Coloring Algorithm AADDA 2017 January 4, 2017 33/33


	Brief Introduction
	Related Work
	Proposed Methodology
	Simulation Results
	Conclusion & Future Work

